Summary:
This function is very similar to add_llvm_library(), so this patch merges it
into add_llvm_library() and replaces all calls to add_llvm_loadable_module(lib ...)
with add_llvm_library(lib MODULE ...)
Reviewers: philip.pfaffe, beanz, chandlerc
Reviewed By: philip.pfaffe
Subscribers: chapuni, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D51748
llvm-svn: 349839
The current llvm.mem.parallel_loop_access metadata has a problem in that
it uses LoopIDs. LoopID unfortunately is not loop identifier. It is
neither unique (there's even a regression test assigning the some LoopID
to multiple loops; can otherwise happen if passes such as LoopVersioning
make copies of entire loops) nor persistent (every time a property is
removed/added from a LoopID's MDNode, it will also receive a new LoopID;
this happens e.g. when calling Loop::setLoopAlreadyUnrolled()).
Since most loop transformation passes change the loop attributes (even
if it just to mark that a loop should not be processed again as
llvm.loop.isvectorized does, for the versioned and unversioned loop),
the parallel access information is lost for any subsequent pass.
This patch unlinks LoopIDs and parallel accesses.
llvm.mem.parallel_loop_access metadata on instruction is replaced by
llvm.access.group metadata. llvm.access.group points to a distinct
MDNode with no operands (avoiding the problem to ever need to add/remove
operands), called "access group". Alternatively, it can point to a list
of access groups. The LoopID then has an attribute
llvm.loop.parallel_accesses with all the access groups that are parallel
(no dependencies carries by this loop).
This intentionally avoid any kind of "ID". Loops that are clones/have
their attributes modifies retain the llvm.loop.parallel_accesses
attribute. Access instructions that a cloned point to the same access
group. It is not necessary for each access to have it's own "ID" MDNode,
but those memory access instructions with the same behavior can be
grouped together.
The behavior of llvm.mem.parallel_loop_access is not changed by this
patch, but should be considered deprecated.
Differential Revision: https://reviews.llvm.org/D52116
llvm-svn: 349725
Some recent experience on llvm-dev pointed out some errors in the document:
- Assumption of ninja
- Use of --march rather than -march
- Problems with host include files when a multiarch setup was used
- Insufficient target information passed to assembler
- Instructions on using the cmake cache file BaremetalARM.cmake were
incomplete
There was also insufficient guidance on what to do when various stages
failed due to misconfiguration or missing steps.
Summary of changes:
- Fixed problems above
- Added a troubleshooting section with common errors.
- Cleared up one "at time of writing" that is no longer a problem.
Differential Revision: https://reviews.llvm.org/D55709
llvm-svn: 349477
Extend FileCheck to dump its input annotated with FileCheck's
diagnostics: errors, good matches if -v, and additional information if
-vv. The goal is to make it easier to visualize FileCheck's matching
behavior when debugging.
Each patch in this series implements input annotations for a
particular category of FileCheck diagnostics. While the first few
patches alone are somewhat useful, the annotations become much more
useful as later patches implement annotations for -v and -vv
diagnostics, which show the matching behavior leading up to the error.
This first patch implements boilerplate plus input annotations for
error diagnostics reporting that no matches were found for a
directive. These annotations mark the search ranges of the failed
directives. Instead of using the usual `^~~`, which is used by later
patches for good matches, these annotations use `X~~` so that this
category of errors is visually distinct.
For example:
```
$ FileCheck -dump-input=help
The following description was requested by -dump-input=help to
explain the input annotations printed by -dump-input=always and
-dump-input=fail:
- L: labels line number L of the input file
- T:L labels the match result for a pattern of type T from line L of
the check file
- X~~ marks search range when no match is found
- colors error
If you are not seeing color above or in input dumps, try: -color
$ FileCheck -v -dump-input=always check1 < input1 |& sed -n '/^Input file/,$p'
Input file: <stdin>
Check file: check1
-dump-input=help describes the format of the following dump.
Full input was:
<<<<<<
1: ; abc def
2: ; ghI jkl
next:3 X~~~~~~~~ error: no match found
>>>>>>
$ cat check1
CHECK: abc
CHECK-SAME: def
CHECK-NEXT: ghi
CHECK-SAME: jkl
$ cat input1
; abc def
; ghI jkl
```
Some additional details related to the boilerplate:
* Enabling: The annotated input dump is enabled by `-dump-input`,
which can also be set via the `FILECHECK_OPTS` environment variable.
Accepted values are `help`, `always`, `fail`, or `never`. As shown
above, `help` describes the format of the dump. `always` is helpful
when you want to investigate a successful FileCheck run, perhaps for
an unexpected pass. `-dump-input-on-failure` and
`FILECHECK_DUMP_INPUT_ON_FAILURE` remain as a deprecated alias for
`-dump-input=fail`.
* Diagnostics: The usual diagnostics are not suppressed in this mode
and are printed first. For brevity in the example above, I've
omitted them using a sed command. Sometimes they're perfectly
sufficient, and then they make debugging quicker than if you were
forced to hunt through a dump of long input looking for the error.
If you think they'll get in the way sometimes, keep in mind that
it's pretty easy to grep for the start of the input dump, which is
`<<<`.
* Colored Annotations: The annotated input is colored if colors are
enabled (enabling colors can be forced using -color). For example,
errors are red. However, as in the above example, colors are not
vital to reading the annotations.
I don't know how to test color in the output, so any hints here would
be appreciated.
Reviewed By: george.karpenkov, zturner, probinson
Differential Revision: https://reviews.llvm.org/D52999
llvm-svn: 349418
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D54719
llvm-svn: 348912
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
Currently if you use -{start,stop}-{before,after}, it picks
the first instance with the matching pass name. If you run
the same pass multiple times, there's no way to distinguish them.
Allow specifying a run index wih ,N to specify which you mean.
llvm-svn: 348285
D47882, D48130 and D48131 introduce a new lowering strategy for part-word
atomicrmw/cmpxchg and uses it to lower these operations for the RISC-V target.
Rather than having AtomicExpandPass produce the LL/SC loop in the IR level, it
instead calculates the necessary mask values and inserts a target-specific
intrinsic, which is lowered at a much later stage (after register allocation).
This ensures that architecture-specific restrictions for forward-progress in
LL/SC loops can be guaranteed.
This patch documents this new AtomicExpandPass functionality. See the previous
llvm-dev RFC for more info
<http://lists.llvm.org/pipermail/llvm-dev/2018-June/123993.html>.
Differential Revision: https://reviews.llvm.org/D52234
llvm-svn: 347971
Summary:
Resubmit this with no changes because I think the build was broken
by a different diff.
-----
The prior diff had to be reverted because there were two tests
that failed. I updated the two tests in this diff
clang/test/Misc/pragma-attribute-supported-attributes-list.test
clang/test/SemaCXX/attr-speculative-load-hardening.cpp
----- Summary from Previous Diff (Still Accurate) -----
LLVM IR already has an attribute for speculative_load_hardening. Before
this commit, when a user passed the -mspeculative-load-hardening flag to
Clang, every function would have this attribute added to it. This Clang
attribute will allow users to opt into SLH on a function by function basis.
This can be applied to functions and Objective C methods.
Reviewers: chandlerc, echristo, kristof.beyls, aaron.ballman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54915
llvm-svn: 347701
until I figure out why the build is failing or timing out
***************************
Summary:
The prior diff had to be reverted because there were two tests
that failed. I updated the two tests in this diff
clang/test/Misc/pragma-attribute-supported-attributes-list.test
clang/test/SemaCXX/attr-speculative-load-hardening.cpp
LLVM IR already has an attribute for speculative_load_hardening. Before
this commit, when a user passed the -mspeculative-load-hardening flag to
Clang, every function would have this attribute added to it. This Clang
attribute will allow users to opt into SLH on a function by function
basis.
This can be applied to functions and Objective C methods.
Reviewers: chandlerc, echristo, kristof.beyls, aaron.ballman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54915
This reverts commit a5b3c232d1e3613f23efbc3960f8e23ea70f2a79.
(r347617)
llvm-svn: 347628
Summary:
The prior diff had to be reverted because there were two tests
that failed. I updated the two tests in this diff
clang/test/Misc/pragma-attribute-supported-attributes-list.test
clang/test/SemaCXX/attr-speculative-load-hardening.cpp
----- Summary from Previous Diff (Still Accurate) -----
LLVM IR already has an attribute for speculative_load_hardening. Before
this commit, when a user passed the -mspeculative-load-hardening flag to
Clang, every function would have this attribute added to it. This Clang
attribute will allow users to opt into SLH on a function by function basis.
This can be applied to functions and Objective C methods.
Reviewers: chandlerc, echristo, kristof.beyls, aaron.ballman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54915
llvm-svn: 347617
Summary:
Basic documentation of the Stack Safety Analysis.
It will be improved during review and upstream of an implementation.
Reviewers: kcc, eugenis, vlad.tsyrklevich, glider
Reviewed By: vlad.tsyrklevich
Subscribers: arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53336
llvm-svn: 347612
Summary:
LLVM IR already has an attribute for speculative_load_hardening. Before
this commit, when a user passed the -mspeculative-load-hardening flag to
Clang, every function would have this attribute added to it. This Clang
attribute will allow users to opt into SLH on a function by function basis.
This can be applied to functions and Objective C methods.
Reviewers: chandlerc, echristo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54555
llvm-svn: 347586
RetireControlUnitStatistics now reports extra information about the ROB and the
avg/maximum number of entries consumed over the entire simulation.
Example:
Retire Control Unit - number of cycles where we saw N instructions retired:
[# retired], [# cycles]
0, 109 (17.9%)
1, 102 (16.7%)
2, 399 (65.4%)
Total ROB Entries: 64
Max Used ROB Entries: 35 ( 54.7% )
Average Used ROB Entries per cy: 32 ( 50.0% )
Documentation in llvm/docs/CommandGuide/llvmn-mca.rst has been updated to
reflect this change.
llvm-svn: 347493
* Add amdhsa prefix to names to allow other tools to use the metadata
without collision.
* Make names consistent.
* Simplify structure.
* Change note record ID.
* Switch from YAML to MsgPack format.
* Document metadata assembler directive.
Patch By: t-tye (Tony Tye)
Differential Revision: https://reviews.llvm.org/D53445
llvm-svn: 346992
A call to @llvm.trap can be expected to be cold (i.e. unlikely to be
reached in a normal program execution).
Outlining paths which unconditionally trap is an important memory
saving. As the hot/cold splitting pass (imho) should not treat all
noreturn calls as cold, explicitly mark @llvm.trap cold so that it can
be outlined.
Split out of https://reviews.llvm.org/D54244.
Differential Revision: https://reviews.llvm.org/D54329
llvm-svn: 346885
In some cases it is desirable to match the same pattern repeatedly
many times. Currently the only way to do it is to copy the same
check pattern as many times as needed. And that gets pretty unwieldy
when its more than count is big.
Introducing CHECK-COUNT-<num> directive which acts like a plain CHECK
directive yet matches the same pattern exactly <num> times.
Extended FileCheckType to a struct to add Count there.
Changed some parsing routines to handle non-fixed length of directive
(all currently existing directives were fixed-length).
The code is generic enough to allow future support for COUNT in more
than just PlainCheck directives.
See motivating example for this feature in reviews.llvm.org/D54223.
Reviewed By: chandlerc, dblaikie
Differential Revision: https://reviews.llvm.org/D54336
llvm-svn: 346722