This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.
Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.
Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.
Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.
RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.
The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).
This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
Making MaterializationResponsibility instances immovable allows their
associated VModuleKeys to be updated by the ExecutionSession while the
responsibility is still in-flight. This will be used in the upcoming
removable code feature to enable safe merging of resource keys even if
there are active compiles using the keys being merged.
Initializers and deinitializers are used to implement C++ static constructors
and destructors, runtime registration for some languages (e.g. with the
Objective-C runtime for Objective-C/C++ code) and other tasks that would
typically be performed when a shared-object/dylib is loaded or unloaded by a
statically compiled program.
MCJIT and ORC have historically provided limited support for discovering and
running initializers/deinitializers by scanning the llvm.global_ctors and
llvm.global_dtors variables and recording the functions to be run. This approach
suffers from several drawbacks: (1) It only works for IR inputs, not for object
files (including cached JIT'd objects). (2) It only works for initializers
described by llvm.global_ctors and llvm.global_dtors, however not all
initializers are described in this way (Objective-C, for example, describes
initializers via specially named metadata sections). (3) To make the
initializer/deinitializer functions described by llvm.global_ctors and
llvm.global_dtors searchable they must be promoted to extern linkage, polluting
the JIT symbol table (extra care must be taken to ensure this promotion does
not result in symbol name clashes).
This patch introduces several interdependent changes to ORCv2 to support the
construction of new initialization schemes, and includes an implementation of a
backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a
MachO specific scheme that handles Objective-C runtime registration (if the
Objective-C runtime is available) enabling execution of LLVM IR compiled from
Objective-C and Swift.
The major changes included in this patch are:
(1) The MaterializationUnit and MaterializationResponsibility classes are
extended to describe an optional "initializer" symbol for the module (see the
getInitializerSymbol method on each class). The presence or absence of this
symbol indicates whether the module contains any initializers or
deinitializers. The initializer symbol otherwise behaves like any other:
searching for it triggers materialization.
(2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h
which provides the following callback interface:
- Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols
in JITDylibs upon creation. E.g. __dso_handle.
- Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally
used to record initializer symbols.
- Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform
that a module is being removed.
Platform implementations can use these callbacks to track outstanding
initializers and implement a platform-specific approach for executing them. For
example, the MachOPlatform installs a plugin in the JIT linker to scan for both
__mod_inits sections (for C++ static constructors) and ObjC metadata sections.
If discovered, these are processed in the usual platform order: Objective-C
registration is carried out first, then static initializers are executed,
ensuring that calls to Objective-C from static initializers will be safe.
This patch updates LLJIT to use the new scheme for initialization. Two
LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO
platform. The GenericIR platform implements a modified version of the previous
llvm.global-ctor scraping scheme to provide support for Windows and
Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO
specific initialization as described above.
Reviewers: sgraenitz, dblaikie
Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74300
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This shortcut mechanism for creating types was added 10 years ago, but
has seen almost no uptake since then, neither internally nor in
external projects.
The very small number of characters saved by using it does not seem
worth the mental overhead of an additional type-creation API, so,
delete it.
Differential Revision: https://reviews.llvm.org/D56573
llvm-svn: 351020
MaterializationResponsibility.
VModuleKeys are intended to enable selective removal of modules from a JIT
session, however for a wide variety of use cases selective removal is not
needed and introduces unnecessary overhead. As of this commit, the default
constructed VModuleKey value is reserved as a "do not track" value, and
becomes the default when adding a new module to the JIT.
This commit also changes the propagation of VModuleKeys. They were passed
alongside the MaterializationResponsibity instance in XXLayer::emit methods,
but are now propagated as part of the MaterializationResponsibility instance
itself (and as part of MaterializationUnit when stored in a JITDylib).
Associating VModuleKeys with MaterializationUnits in this way should allow
for a thread-safe module removal mechanism in the future, even when a module
is in the process of being compiled, by having the
MaterializationResponsibility object check in on its VModuleKey's state
before commiting its results to the JITDylib.
llvm-svn: 344643
implementation as lazy compile callbacks, and a "lazy re-exports" utility that
builds lazy call-throughs.
Lazy call-throughs are similar to lazy compile callbacks (and are based on the
same underlying state saving/restoring trampolines) but resolve their targets
by performing a standard ORC lookup rather than invoking a user supplied
compiler callback. This allows them to inherit the thread-safety of ORC lookups
while blocking only the calling thread (whereas compile callbacks also block one
compile thread).
Lazy re-exports provide a simple way of building lazy call-throughs. Unlike a
regular re-export, a lazy re-export generates a new address (a stub entry point)
that will act like the re-exported symbol when called. The first call via a
lazy re-export will trigger compilation of the re-exported symbol before calling
through to it.
llvm-svn: 343061
construction, a new convenience lookup method, and add-to layer methods.
ExecutionSession now creates a special 'main' JITDylib upon construction. All
subsequently created JITDylibs are added to the main JITDylib's search order by
default (controlled by the AddToMainDylibSearchOrder parameter to
ExecutionSession::createDylib). The main JITDylib's search order will be used in
the future to properly handle cross-JITDylib weak symbols, with the first
definition in this search order selected.
This commit also adds a new ExecutionSession::lookup convenience method that
performs a blocking lookup using the main JITDylib's search order, as this will
be a very common operation for clients.
Finally, new convenience overloads of IRLayer and ObjectLayer's add methods are
introduced that add the given program representations to the main dylib, which
is likely to be the common case.
llvm-svn: 342086
VSO was a little close to VDSO (an acronym on Linux for Virtual Dynamic Shared
Object) for comfort. It also risks giving the impression that instances of this
class could be shared between ExecutionSessions, which they can not.
JITDylib seems moderately less confusing, while still hinting at how this
class is intended to be used, i.e. as a JIT-compiled stand-in for a dynamic
library (code that would have been a dynamic library if you had wanted to
compile it ahead of time).
llvm-svn: 340084
A search order is a list of VSOs to be searched linearly to find symbols. Each
VSO now has a search order that will be used when fixing up definitions in that
VSO. Each VSO's search order defaults to just that VSO itself.
This is a first step towards removing symbol resolvers from ORC altogether. In
practice symbol resolvers tended to be used to implement a search order anyway,
sometimes with additional programatic generation of symbols. Now that VSOs
support programmatic generation of definitions via fallback generators, search
orders provide a cleaner way to achieve the desired effect (while removing a lot
of boilerplate).
llvm-svn: 337593
Previously JITCompileCallbackManager only supported single threaded code. This
patch embeds a VSO (see include/llvm/ExecutionEngine/Orc/Core.h) in the callback
manager. The VSO ensures that the compile callback is only executed once and that
the resulting address cached for use by subsequent re-entries.
llvm-svn: 333490
Previously this crashed because a nullptr (returned by
createLocalIndirectStubsManagerBuilder() on platforms without
indirection support) functor was unconditionally invoked.
Patch by Andres Freund. Thanks Andres!
llvm-svn: 328687
concept.
Add a unit-test to make sure we don't backslide, and tweak the MockBaseLayer
utility to make it easier to test this kind of thing in the future.
llvm-svn: 314374
This patch updates the ORC layers and utilities to return and propagate
llvm::Errors where appropriate. This is necessary to allow ORC to safely handle
error cases in cross-process and remote JITing.
llvm-svn: 307350
Revert "[ORC] Remove redundant semicolons from DEFINE_SIMPLE_CONVERSION_FUNCTIONS uses."
Revert "[ORC] Move ORC IR layer interface from addModuleSet to addModule and fix the module type as std::shared_ptr<Module>."
They broke ExecutionEngine/OrcMCJIT/test-global-ctors.ll on linux.
llvm-svn: 306176
clang-format (https://reviews.llvm.org/D33932) to keep primary headers
at the top and handle new utility headers like 'gmock' consistently with
other utility headers.
No other change was made. I did no manual edits, all of this is
clang-format.
This should allow other changes to have more clear and focused diffs,
and is especially motivated by moving some headers into more focused
libraries.
llvm-svn: 304786
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
When the ProcessAllSections flag (introduced in r204398) is set RuntimeDyld is
supposed to make a call to the client's memory manager for every section in each
object that is loaded. Due to some missing checks, this was not happening in all
cases. This patch adds the missing cases, and fixes the Orc unit test that
verifies correct behavior for ProcessAllSections (The unit test had been
silently bailing out due to an ordering issue: a change in the test order meant
that this unit-test was running before the native target was registered. This
issue has also been fixed in this patch).
This fixes <rdar://problem/22789965>
llvm-svn: 299449
This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).
For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.
For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.
llvm-svn: 277386
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
This patch adds a new class, OrcI386, which contains the hooks needed to
support lazy-JITing on i386 (currently only for Pentium 2 or above, as the JIT
re-entry code uses the FXSAVE/FXRSTOR instructions).
Support for i386 is enabled in the LLI lazy JIT and the Orc C API, and
regression and unit tests are enabled for this architecture.
llvm-svn: 260338
Previously these were Darwin-only. Since the switch to direct binary emission
of stubs, trampolines and resolver blocks, these should work on other *nix
platforms too.
These tests can be enabled on Windows once known issues with ORC's handling of
Windows symbol mangling (see e.g. https://llvm.org/PR25940) have been fixed.
llvm-svn: 258031
managers.
Prior to this patch, recursive finalization (where finalization of one
RuntimeDyld instance triggers finalization of another instance on which the
first depends) could trigger memory access failures: When the inner (dependent)
RuntimeDyld instance and its memory manager are finalized, memory allocated
(but not yet relocated) by the outer instance is locked, and relocation in the
outer instance fails with a memory access error.
This patch adds a latch to the RuntimeDyld::MemoryManager base class that is
checked by a new method: RuntimeDyld::finalizeWithMemoryManagerLocking, ensuring
that shared memory managers are only finalized by the outermost RuntimeDyld
instance.
This allows ORC clients to supply the same memory manager to multiple calls to
addModuleSet. In particular it enables the use of user-supplied memory managers
with the CompileOnDemandLayer which must reuse the supplied memory manager for
each function that is lazily compiled.
llvm-svn: 257263
the function body.
This is necessary for correctness when lazily compiling.
Also, flesh out the Orc unit test infrastructure slightly, and add a unit test
for this.
llvm-svn: 235347