This takes sequences like "mov r4, sp; str r0, [r4]", and optimizes them
to something like "str r0, [sp]".
For regular stack variables, this optimization was already implemented:
we lower loads and stores using frame indexes, which are expanded later.
However, when constructing a call frame for a call with more than four
arguments, the existing optimization doesn't apply. We need to use
stores which are actually relative to the current value of sp, and don't
have an associated frame index.
This patch adds a special case to handle that construct. At the DAG
level, this is an ISD::STORE where the address is a CopyFromReg from SP
(plus a small constant offset).
This applies only to Thumb1: in Thumb2 or ARM mode, a regular store
instruction can access SP directly, so the COPY gets eliminated by
existing code.
The change to ARMDAGToDAGISel::SelectThumbAddrModeSP is a related
cleanup: we shouldn't pretend that it can select anything other than
frame indexes.
Differential Revision: https://reviews.llvm.org/D59568
llvm-svn: 356601
Before this commit, we emit unavailable errors for calls to functions during
overload resolution, and for references to all other declarations in
DiagnoseUseOfDecl. The early checks during overload resolution aren't as good as
the DiagnoseAvailabilityOfDecl based checks, as they error on the code from
PR40991. This commit fixes this by removing the early checking.
llvm.org/PR40991
rdar://48564179
Differential revision: https://reviews.llvm.org/D59394
llvm-svn: 356599
This diff previously exposed a bug in LLVM's IRLinker, breaking
buildbots that tried to self-host LLVM with monolithic LTO.
The bug is now in LLVM by D59552
Original commit message:
As PR17480 describes, clang does not support the used attribute
for member functions of class templates. This means that if the member
function is not used, its definition is never instantiated. This patch
changes clang to emit the definition if it has the used attribute.
Test Plan: Added a testcase
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D56928
llvm-svn: 356598
Summary:
When linking two llvm.used arrays, if the resulting merged
array ends up with duplicated elements (with the same name) but with
different types, the IRLinker was crashing. This was supposed to be
legal, as the IRLinker bitcasts elements to match types in these
situations.
This bug was exposed by D56928 in clang to support attribute used
in member functions of class templates. Crash happened when self-hosting
with LTO. Since LLVM depends on attribute used to generate code
for the dump() method, ubiquitous in the code base, many input bc
had a definition of this method referenced in their llvm.used array.
Some of these classes got optimized, changing the type of the first
parameter (this) in the dump method, leading to a scenario with a
pool of valid definitions but some with a different type, triggering
this bug.
This is a memory bug: ValueMapper depends on (calls) the materializer
provided by IRLinker, and this materializer was freely calling RAUW
methods whenever a global definition was updated in the temporary merged
output file. However, replaceAllUsesWith may or may not destroy
constants that use this global. If the linked definition has a type
mismatch regarding the new def and the old def, the materializer would
bitcast the old type to the new type and the elements of the llvm.used
array, which already uses bitcast to i8*, would end up with elements
cascading two bitcasts. RAUW would then indirectly call the
constantfolder to update the constant to the new ref, which would,
instead of updating the constant, destroy it to be able to create
a new constant that folds the two bitcasts into one. The problem is that
ValueMapper works with pointers to the same constants that may be
getting destroyed by RAUW. Obviously, RAUW can update references in the
Module to do not use the old destroyed constant, but it can't update
ValueMapper's internal pointers to these constants, which are now
invalid.
The approach here is to move the task of RAUWing old definitions
outside of the materializer.
Test Plan:
Added LIT test case, tested clang self-hosting with D56928 and
verified it works
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D59552
llvm-svn: 356597
D58391 changed the LTO pipelines to add the tailcall elimination pass.
This caused three LLD tests to fail.
Differential Revision: https://reviews.llvm.org/D59604
llvm-svn: 356593
Summary:
`ASTImporter::Imported` currently returns a Decl, but that return value is not used by the ASTImporter (or anywhere else)
nor is it documented.
Reviewers: balazske, martong, a.sidorin, shafik
Reviewed By: balazske, martong
Subscribers: rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59595
llvm-svn: 356592
Summary:
PAL metadata now supports both the old linear reg=val pairs format and
the new MsgPack format.
The MsgPack format uses YAML as its textual representation. On output to
YAML, a mnemonic name is provided for some hardware registers.
Differential Revision: https://reviews.llvm.org/D57028
Change-Id: I2bbaabaaca4b3574f7e03b80fbef7c7a69d06a94
llvm-svn: 356591
If we know we're not storing a lane, we don't need to compute the lane. This could be improved by using the undef element result to further prune the mask, but I want to separate that into its own change since it's relatively likely to expose other problems.
Differential Revision: https://reviews.llvm.org/D57247
llvm-svn: 356590
Summary:
Before this patch, if any Use existed in the loop, with a defining
access in the loop, we conservatively decide to not move the store.
What this approach was missing, is that ordered loads are not Uses, they're Defs
in MemorySSA. So, even when the clobbering walker does not find that
volatile load to interfere, we still cannot hoist a store past a
volatile load.
Resolves PR41140.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59564
llvm-svn: 356588
Summary:
This change allows specifying the version of libc++abi's ABI to re-export
when configuring CMake. It also clearly identifies which ABI version of
libc++abi each export file contains.
Finally, it removes hardcoded knowledge about the 10.9 SDK for MacOS,
since that knowledge is not relevant anymore. Indeed, libc++ can't be
built with the toolchain that came with the 10.9 SDK anyway because
the version of Clang it includes is too old (for example if you want
to build a working libc++.dylib, you need bugfixes to visibility
attributes that are only in recent Clangs).
Reviewers: dexonsmith, EricWF
Subscribers: mgorny, christof, jkorous, arphaman, libcxx-commits
Differential Revision: https://reviews.llvm.org/D59489
llvm-svn: 356587
This is a small followup to D59511. The code that was moved into
computeConstantRange() there is a bit overly conversative: If the
abs is not nsw, it does not compute any range. However, abs without
nsw still has a well-defined contiguous unsigned range from 0 to
SIGNED_MIN. This is a lot less useful than the usual 0 to SIGNED_MAX
range, but if we're already here we might as well specify it...
Differential Revision: https://reviews.llvm.org/D59563
llvm-svn: 356586
Summary:
This commit introduces a new AMDGPUPALMetadata class that:
* is inside the AMDGPU target;
* keeps an in-memory representation of PAL metadata;
* provides a method to read the frontend-supplied metadata from LLVM IR;
* provides methods for the asm printer to set metadata items;
* provides methods to write the metadata as a binary blob to put in a
.note record or as an asm directive;
* provides a method to read the metadata as a binary blob from a .note
record.
Because llvm-readobj cannot call directly into a target, I had to remove
llvm-readobj's ability to dump PAL metadata, pending a resolution to
https://reviews.llvm.org/D52821
Differential Revision: https://reviews.llvm.org/D57027
Change-Id: I756dc830894fcb6850324cdcfa87c0120eb2cf64
llvm-svn: 356582
Also hide __cpu_inicator_init and __cpu_features2
for similar reasons.
Summary: Make __cpu_model a hidden symbol, to match libgcc.
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59561
llvm-svn: 356581
Fails on MSVC buildbot (but not locally).
Not important as it is 'testing' something that isn't supported yet anyway:
https://bugs.llvm.org/show_bug.cgi?id=41022
llvm-svn: 356577
Summary:
Sometime after 6.0.0 and the current trunk 9.0.0 the following code would be considered as objective C and not C++
Reported by: https://twitter.com/mattgodbolt/status/1096188576503644160
$ clang-format.exe test.h
Configuration file(s) do(es) not support Objective-C: C:\clang\build\.clang-format
--- test.h --
```
std::vector<std::pair<std::string,std::string>> C;
void foo()
{
for (auto && [A,B] : C)
{
std::string D = A + B;
}
}
```
The following code fixes this issue of incorrect detection
Reviewers: djasper, klimek, JonasToth, reuk
Reviewed By: klimek
Subscribers: cfe-commits
Tags: #clang-tools-extra
Differential Revision: https://reviews.llvm.org/D59546
llvm-svn: 356575
This patch fixes:
UUIDs now don't include the age field from a PDB70 when the age is zero. Prior to this they would incorrectly contain the zero age which stopped us from being able to match up the UUID with real files.
UUIDs for Apple targets get the first 32 bit value and next two 16 bit values swapped. Breakpad incorrectly swaps these values when it creates darwin minidump files, so this must be undone so we can match up symbol files with the minidump modules.
UUIDs that are all zeroes are treated as invalid UUIDs. Breakpad will always save out a UUID, even if one wasn't available. This caused all files that have UUID values of zero to be uniqued to the first module that had a zero UUID. We now don't fill in the UUID if it is all zeroes.
Added tests for PDB70 and ELF build ID based CvRecords.
Differential Revision: https://reviews.llvm.org/D59433
llvm-svn: 356573
Summary:
[OpenCL] Generate 'unroll.enable' metadata for __attribute__((opencl_unroll_hint))
For both !{!"llvm.loop.unroll.enable"} and !{!"llvm.loop.unroll.full"} the unroller
will try to fully unroll a loop unless the trip count is not known at compile time.
In that case for '.full' metadata no unrolling will be processed, while for '.enable'
the loop will be partially unrolled with a heuristically chosen unroll factor.
See: docs/LanguageExtensions.rst
From https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/attributes-loopUnroll.html
__attribute__((opencl_unroll_hint))
for (int i=0; i<2; i++)
{
...
}
In the example above, the compiler will determine how much to unroll the loop.
Before the patch for __attribute__((opencl_unroll_hint)) was generated metadata
!{!"llvm.loop.unroll.full"}, which limits ability of loop unroller to decide, how
much to unroll the loop.
Reviewers: Anastasia, yaxunl
Reviewed By: Anastasia
Subscribers: zzheng, dmgreen, jdoerfert, cfe-commits, asavonic, AlexeySotkin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59493
llvm-svn: 356571
Summary:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3:
```
structured block
For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.
COMMENT: See Section 2.1 on page 38 for restrictions on structured
blocks.
```
```
2.1 Directive Format
Some executable directives include a structured block. A structured block:
• may contain infinite loops where the point of exit is never reached;
• may halt due to an IEEE exception;
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);
• may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and
Restrictions
Restrictions to structured blocks are as follows:
• Entry to a structured block must not be the result of a branch.
• The point of exit cannot be a branch out of the structured block.
C / C++
• The point of entry to a structured block must not be a call to setjmp().
• longjmp() and throw() must not violate the entry/exit criteria.
```
Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`,
in the same sense as with the normal `noexcept` functions in C++.
I.e. if throw happens, and it attempts to travel out of the `noexcept` function
(here: out of the current structured-block), then the program terminates.
Now, one of course can say that since it is explicitly prohibited by the Specification,
then any and all programs that violate this Specification contain undefined behavior,
and are unspecified, and thus no one should care about them. Just don't write broken code /s
But i'm not sure this is a reasonable approach.
I have personally had oss-fuzz issues of this origin - exception thrown inside
of an OpenMP structured-block that is not caught, thus causing program termination.
This issue isn't all that hard to catch, it's not any particularly different from
diagnosing the same situation with the normal `noexcept` function.
Now, clang static analyzer does not presently model exceptions.
But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check,
and it is even refactored as a `ExceptionAnalyzer` class for reuse.
So it would be trivial to use that analyzer to check for
exceptions escaping out of OpenMP structured blocks. (D59466)
All that sounds too great to be true. Indeed, there is a caveat.
Presently, it's practically impossible to do. To check a OpenMP structured block
you need to somehow 'get' the OpenMP structured block, and you can't because
it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation.
Now, it is of course possible to write e.g. some AST matcher that would e.g.
match every OpenMP executable directive, and then return the whatever `Stmt` is
the structured block of said executable directive, if any.
But i said //practically//. This isn't practical for the following reasons:
1. This **will** bitrot. That matcher will need to be kept up-to-date,
and refreshed with every new OpenMP spec version.
2. Every single piece of code that would want that knowledge would need to
have such matcher. Well, okay, if it is an AST matcher, it could be shared.
But then you still have `RecursiveASTVisitor` and friends.
`2 > 1`, so now you have code duplication.
So it would be reasonable (and is fully within clang AST spirit) to not
force every single consumer to do that work, but instead store that knowledge
in the correct, and appropriate place - AST, class structure.
Now, there is another hoop we need to get through.
It isn't fully obvious //how// to model this.
The best solution would of course be to simply add a `OMPStructuredBlock` transparent
node. It would be optimal, it would give us two properties:
* Given this `OMPExecutableDirective`, what's it OpenMP structured block?
* It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`)
But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`.
(even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween).
So i'm not sure whether or not we could re-create AST statements after they were already created?
There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12
```
1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity.
2. You will need to support serialization/deserialization.
3. You will need to support template instantiation.
4. You will need to support codegen and take this new construct to account in each OpenMP directive.
```
Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts.
Part 1:
* Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class,
that will tell whether this directive is stand-alone or not, as per the spec.
We need it because we can't just check for the existance of associated statements,
see code comment.
* Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself,
that assert that this is not a stand-alone directive, and either return the correct loop body
if this is a loop-like directive, or the captured statement.
This way, given an `OMPExecutableDirective`, we can get it's structured block.
Also, since the knowledge is ingrained into the clang OpenMP implementation,
it will not cause any duplication, and //hopefully// won't bitrot.
Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach.
Thus, there is a second part needed:
* How can we check whether a given `Stmt*` is `OMPStructuredBlock`?
Well, we can't really, in general. I can see this workaround:
```
class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> {
using Base = RecursiveASTVisitor<FunctionASTVisitor>;
public:
bool VisitOMPExecDir(OMPExecDir *D) {
OmpStructuredStmts.emplace_back(D.getStructuredStmt());
}
bool VisitSOMETHINGELSE(???) {
if(InOmpStructuredStmt)
HI!
}
bool TraverseStmt(Stmt *Node) {
if (!Node)
return Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node)
++InOmpStructuredStmt;
Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node) {
OmpStructuredStmts.pop_back();
--InOmpStructuredStmt;
}
return true;
}
std::vector<Stmt*> OmpStructuredStmts;
int InOmpStructuredStmt = 0;
};
```
But i really don't see using it in practice.
It's just too intrusive; and again, requires knowledge duplication.
.. but no. The solution lies right on the ground.
Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself?
This does not appear to have any impact on the memory footprint of the clang AST,
since it's just a single extra bit in the bitfield. At least the static assertions don't fail.
Thus, indeed, we can achieve both of the properties without a new AST node.
We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`,
by just calling the `getStructuredBlock()` that we just added.
Test coverage that demonstrates all this has been added.
This isn't as great with serialization though. Most of it does not use abbrevs,
so we do end up paying the full price (4 bytes?) instead of a single bit.
That price, of course, can be reclaimed by using abbrevs.
In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly.
I'm not seeing a third solution. If there is one, it would be interesting to hear about it.
("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.)
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]].
Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr
Reviewed By: ABataev, gribozavr
Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D59214
llvm-svn: 356570
Summary:
Split off from D59214.
Not a fully exhaustive test coverage, but better than what there currently is.
Differential Revision: https://reviews.llvm.org/D59306
llvm-svn: 356569
This should be extended, but CGP does some strange things,
so I'm intentionally not changing the potential order of
any transforms yet.
llvm-svn: 356566
[clang-tidy] Parallelize clang-tidy-diff.py
This patch has 2 rationales:
- large patches lead to long command lines and often cause max command line length restrictions imposed by OS;
- clang-tidy runs on modified files are independent and can be done in parallel, the same as done for run-clang-tidy.
Differential Revision: https://reviews.llvm.org/D57662
llvm-svn: 356565
Summary:
The ASTNodeImporter::ImportTemplateParameterList is replaced by a
template specialization of 'import' that already exists and does
(almost) the same thing.
Reviewers: martong, a.sidorin, shafik, a_sidorin
Reviewed By: martong
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59134
llvm-svn: 356564
This fixes CI for back-deployment testers on platforms that don't have
<filesystem> support in the dylib.
This is effectively half of https://reviews.llvm.org/D59224. The other
half requires fixes in Clang.
llvm-svn: 356558