when run on an Intel Atom processor. The failures have arisen due
to changes elsewhere in the trunk over the past 8 weeks or so.
These failures were not detected by the Atom buildbot because the
CPU on the Atom buildbot was not being detected as an Atom CPU.
The fix for this problem is in Host.cpp and X86Subtarget.cpp, but
shall remain commented out until the current set of Atom test failures
are fixed.
Patch by Andy Zhang and Tyler Nowicki!
llvm-svn: 160451
Improved the error message when we can find a function in the current program by printing the demangled name.
Also added the ability to create lldb_private::Mangled instances with a ConstString when we already have a ConstString for a mangled or demangled name. Also added the ability to call SetValue with a ConstString and also without a boolean to indicate if the string is mangled where we will now auto-detect if the string is mangled.
llvm-svn: 160450
This enables the faster SmallVector in clang and also allows clang's unused
variable warnings to be more effective. Fix the two instances that popped up.
The RetainCountChecker change actually changes functionality, it would be nice
if someone from the StaticAnalyzer folks could look at it.
llvm-svn: 160444
LiveIntervals due to the two-addr pass generating bogus MI code.
The crux of the issue was a loop nesting problem. The intent of the code
which attempts to transform instructions before converting them to
two-addr form is to defer and reprocess any transformed instructions as
the second processing is likely to have more opportunities to coalesce
copies, etc. Unfortunately, there was one section of processing that was
not deferred -- the INSERT_SUBREG rewriting. Due to quirks of how this
rewriting proceeded, not only did it occur early, it removed the bits of
information needed for the deferred processing to correctly generate the
necessary two address form (specifically inserting a copy), but didn't
trigger any immediate assertions and produced what appeared to be
already valid two-address from code. Thus, the assertion only fired much
later in the pipeline.
The fix is to hoist the transformation logic up layer to where it can
more firmly defer all further processing, and to teach the normal
processing to handle an edge case previously handled as part of the
transformation logic. This edge case (already matched tied register
operands) needs to *not* defer any steps.
As has been brought up repeatedly in the process: wow does this code
need refactoring. I *may* squeeze in some time to at least bring sanity
to this loop... but wow... =]
Thanks to Jakob for helpful hints on the way here, and the review.
llvm-svn: 160443
despite __attribute__(__used__). As explained by Argyrios,
> .a archive files do some stripping of their own and they remove .o files that
> contain functions that are not referenced by any other .o file.
The fix is to use these functions from another .o file.
Thanks, Argyrios!
llvm-svn: 160437
load source operand is used by multiple nodes. The v2i64 broadcast was emulated
by shuffling the two lower i32 elements to the upper two.
We had a bug in the immediate used for the broadcast.
Replacing 0 to 0x44.
0x44 means [01|00|01|00] which corresponds to the correct lane.
Patch by Michael Kuperstein.
llvm-svn: 160430
Print the high order register of a double word register operand.
In 32 bit mode, a 64 bit double word integer will be represented
by 2 32 bit registers. This modifier causes the high order register
to be used in the asm expression. It is useful if you are using
doubles in assembler and continue to control register to variable
relationships.
This patch also fixes a related bug in a previous patch:
case 'D': // Second part of a double word register operand
case 'L': // Low order register of a double word register operand
case 'M': // High order register of a double word register operand
I got 'D' and 'M' confused. The second part of a double word operand
will only match 'M' for one of the endianesses. I had 'L' and 'D'
be the opposite twins when 'L' and 'M' are.
llvm-svn: 160429
Fixes PR13371: indvars pass incorrectly substitutes 'undef' values.
I do not like this fix. It's needed until/unless the meaning of undef
changes. It attempts to be complete according to the IR spec, but I
don't have much confidence in the implementation given the difficulty
testing undefined behavior. Worse, this invalidates some of my
hard-fought work on indvars and LSR to optimize pointer induction
variables. It results benchmark regressions, which I'll track
internally. On x86_64 no LTO I see:
-3% huffbench
-3% 400.perlbench
-8% fhourstones
My only suggestion for recovering is to change the meaning of
undef. If we could trust an arbitrary instruction to produce a some
real value that can be manipulated (e.g. incremented) according to
non-undef rules, then this case could be easily handled with SCEV.
llvm-svn: 160421
be defined as deleted, take cv-qualifiers on class members into account when
looking up the copy or move constructor or assignment operator which will be
used for them.
llvm-svn: 160418
and a function template instantiation, if there's a parameter pack in the
declaration and one at the same place in the instantiation, don't assume that
the pack wasn't expanded -- it may have expanded to nothing. Instead, go ahead
and check whether the parameter pack was expandable. We can do this as a
side-effect of the work we'd need to do anyway, to find how many parameters
were produced.
llvm-svn: 160416
[temp.deduct.call]p4 under Objective-C++ ARC, make sure to adjust the
qualifiers to introduce the implicit strong lifetime when
needed. Fixes <rdar://problem/11825671>.
llvm-svn: 160412
intrinsics. The second instruction(s) to be handled are the vector versions
of count set bits (ctpop).
The changes here are to clang so that it generates a target independent
vector ctpop when it sees an ARM dependent vector bits set count. The changes
in llvm are to match the target independent vector ctpop and in
VMCore/AutoUpgrade.cpp to update any existing bc files containing ARM
dependent vector pop counts with target-independent ctpops. There are also
changes to an existing test case in llvm for ARM vector count instructions and
to a test for the bitcode upgrade.
<rdar://problem/11892519>
There is deliberately no test for the change to clang, as so far as I know, no
consensus has been reached regarding how to test neon instructions in clang;
q.v. <rdar://problem/8762292>
llvm-svn: 160410
intrinsics. The second instruction(s) to be handled are the vector versions
of count set bits (ctpop).
The changes here are to clang so that it generates a target independent
vector ctpop when it sees an ARM dependent vector bits set count. The changes
in llvm are to match the target independent vector ctpop and in
VMCore/AutoUpgrade.cpp to update any existing bc files containing ARM
dependent vector pop counts with target-independent ctpops. There are also
changes to an existing test case in llvm for ARM vector count instructions and
to a test for the bitcode upgrade.
<rdar://problem/11892519>
There is deliberately no test for the change to clang, as so far as I know, no
consensus has been reached regarding how to test neon instructions in clang;
q.v. <rdar://problem/8762292>
llvm-svn: 160409