And with that simplify the logic for inserting them in ExternalSymbolData or
LocalSymbolData.
No functionality change overall since the old code avoided the isLocal bug.
llvm-svn: 238555
ELF has no restrictions on where undefined symbols go relative to other defined
symbols. In fact, gas just sorts them together. Do the same.
This was there since r111174 probably just because the MachO writer has it.
llvm-svn: 238513
This was a bug for bug compatibility with gas that is completely unnecessary.
If a _GLOBAL_OFFSET_TABLE_ symbol is used, it will already be created by
the time we get to the ELF writer.
llvm-svn: 238432
Both MCStreamer and MCObjectStreamer were maintaining a current section
variable and they were slightly out of sync. I don't think this was observable,
but was inefficient and error prone.
Changing this requires a few cascading changes:
* SwitchSection has to call ChangeSection earlier for ChangeSection to see
the old section.
* With that change, ChangeSection cannot call EmitLabel, since during
ChangeSection we are still in the old section.
* When the object streamer requires a begin label, just reused the existing
generic support for begin labels instead of calling EmitLabel directly.
llvm-svn: 238357
Normally an ELF .o has two string tables, one for symbols, one for section
names.
With the scheme of naming sections like ".text.foo" where foo is a symbol,
there is a big potential saving in using a single one.
Building llvm+clang+lld with master and with this patch the results were:
master: 193,267,008 bytes
patch: 186,107,952 bytes
master non unique section names: 183,260,192 bytes
patch non unique section names: 183,118,632 bytes
So using non usique saves 10,006,816 bytes, and the patch saves 7,159,056 while
still using distinct names for the sections.
llvm-svn: 238073
This starts merging MCSection and MCSectionData.
There are a few issues with the current split between MCSection and
MCSectionData.
* It optimizes the the not as important case. We want the production
of .o files to be really fast, but the split puts the information used
for .o emission in a separate data structure.
* The ELF/COFF/MachO hierarchy is not represented in MCSectionData,
leading to some ad-hoc ways to represent the various flags.
* It makes it harder to remember where each item is.
The attached patch starts merging the two by moving the alignment from
MCSectionData to MCSection.
Most of the patch is actually just dropping 'const', since
MCSectionData is mutable, but MCSection was not.
llvm-svn: 237936
Transition one API from `MCSymbolData` to `MCSymbol`. The function
needs both, and the backpointer from `MCSymbolData` to `MCSymbol` is
going away.
llvm-svn: 237498
Instead of storing a list of the `MCSymbolData` in use, store the
`MCSymbol`s. Churning in the direction of removing the back pointer
from `MCSymbolData`.
llvm-svn: 237496
This is actually fairly simple in the current code layout: Check if we should
compress just before writing out and everything else just works.
This removes the last case in which the object writer was creating a
fragment.
llvm-svn: 236267
During ELF writing, there is no need to further relax the sections, so we
should not be creating fragments. This patch avoids doing so in all cases
but debug section compression (that is next).
Also, the ELF format is fairly simple to write. We can do a single pass over
the sections to write them out and compute the section header table.
llvm-svn: 236235
Instead of accumulating the content in a fragment first, just write it
to the output stream.
Also put it first in the section table, so that we never have to worry
about its index being >= SHN_LORESERVE.
llvm-svn: 236145
We have to avoid converting a reference to a global into a reference to a local,
but it is fine to look past a local.
Patch by Vasileios Kalintiris.
I just moved the comment and added thet test.
llvm-svn: 235300
Similar to r235222, but for the weak symbol case.
In an "ideal" assembler/object format an expression would always refer to the
final value and A-B would only be computed from a section in the same
comdat as A and B with A and B strong.
Unfortunately that is not the case with debug info on ELF, so we need an
heuristic. Since we need an heuristic, we may as well use the same one as
gas:
* call weak_sym : produces a relocation, even if in the same section.
* A - weak_sym and weak_sym -A: don't produce a relocation if we can
compute it.
This fixes pr23272 and changes the fix of pr22815 to match what gas does.
llvm-svn: 235227
Part of pr23272.
A small annoyance with the assembly syntax we implement is that given an
expression there is no way to know if what is desired is the value of that
expression for the symbols in this file or for the final values of those
symbols in a link.
The first case is useful for use in sections that get discarded or ignored
if the section they are describing is discarded.
For axample, consider A-B where A and B are in the same comdat section.
We can compute the value of the difference in the section that is present in
the current .o and if that section survives to the final DSO the value will
still will be correct.
But the section is in a comdat. Another section from another object file
might be used istead. We know that that section will define A and B, but
we have no idea what the value of A-B might be.
In practice we have to assume that the intention is to compute the value
in the current section since otherwise the is no way to create something like
the debug aranges section.
llvm-svn: 235222
Linkers normally read all the relocations upfront to compute the references
between sections. Putting them together is a bit more cache friendly.
I benchmarked linking a Release+Asserts clang with gold on a vm. I tried all
4 combinations of --gc-sections/no --gc-section hot and cold cache.
I cleared the cache with
echo 3 > /proc/sys/vm/drop_caches
and warmed it up by running the link once before timing the subsequent ones.
With cold cache and --gc-sections the time goes from
1.86130781665 +- 0.01713126697463843 seconds
to
1.82370735105 +- 0.014127522318814516 seconds
With cold cache and no --gc-sections the time goes from
1.6087245435500002 +- 0.012999066825178644 seconds
to
1.5687122041500001 +- 0.013145850126026619 seconds
With hot cache and no --gc-sections the time goes from
0.926200939 ( +- 0.33% ) seconds
to
0.907200079 ( +- 0.31% ) seconds
With hot cache and gc sections the time goes from
1.183038049 ( +- 0.34% ) seconds
to
1.147355862 ( +- 0.39% ) seconds
llvm-svn: 235165
Now we don't have to do 2 synchronized passes to compute offsets and then
write the file.
This also includes a fix for the corner case of seeking in /dev/null. It
is not an error, but on some systems (Linux) the returned offset is
always 0. An error is signaled by returning -1. This is checked by
the existing tests now that "clang -o /dev/null ..." seeks.
llvm-svn: 234952
Some targets (ie. Mips) have additional rules for ordering the relocation
table entries. Allow them to override generic sortRelocs(), which sorts
entries by Offset.
Then override this function for Mips, to emit HI16 and GOT16 relocations
against the local symbol in pair with the corresponding LO16 relocation.
Patch by Vladimir Stefanovic.
Differential Revision: http://reviews.llvm.org/D7414
llvm-svn: 234883
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
One could make the argument for writing it immediately after the ELF header,
but writing it in the middle of the sections like we were doing just makes
it harder for no reason.
llvm-svn: 234400
Before when deciding if we needed a relocation in A-B, we wore only checking
if A was weak.
This fixes the asymmetry.
The "InSet" argument should probably be renamed to "ForValue", since InSet is
very MachO specific, but doing so in this patch would make it hard to read.
This fixes PR22815.
llvm-svn: 234165
These sections are never looked up and we know when have to create them. Use
that to save adding them to the regular map and avoid a symbol->string->symbol
conversion for the group symbol.
This also makes the implementation independent of the details of how unique
sections are implemented.
llvm-svn: 233539
The previous logic was to first try without relocations at all
and failing that stop on the first defined symbol.
That was inefficient and incorrect in the case part of the
expression could be simplified and another part could not
(see included test).
We now stop the evaluation when we get to a variable whose value
can change (i.e. is weak).
llvm-svn: 233187
In a subtraction of the form A - B, if B is weak, there is no way to represent
that on ELF since all relocations add the value of a symbol.
llvm-svn: 233139
The operand flag word for ISD::INLINEASM nodes now contains a 15-bit
memory constraint ID when the operand kind is Kind_Mem. This constraint
ID is a numeric equivalent to the constraint code string and is converted
with a target specific hook in TargetLowering.
This patch maps all memory constraints to InlineAsm::Constraint_m so there
is no functional change at this point. It just proves that using these
previously unused bits in the encoding of the flag word doesn't break
anything.
The next patch will make each target preserve the current mapping of
everything to Constraint_m for itself while changing the target independent
implementation of the hook to return Constraint_Unknown appropriately. Each
target will then be adapted in separate patches to use appropriate
Constraint_* values.
PR22883 was caused the matching operands copying the whole of the operand flags
for the matched operand. This included the constraint id which needed to be
replaced with the operand number. This has been fixed with a conversion
function. Following on from this, matching operands also used the operand
number as the constraint id. This has been fixed by looking up the matched
operand and taking it from there.
llvm-svn: 232165