Commit Graph

71 Commits

Author SHA1 Message Date
Florian Hahn a2979c8399
[IVDescriptors] Bail out instead of asserting that order is expected.
When dealing with multiple phis that depend on each other, the order
might have been changed and may not match the expectation. If that
happens, bail out, rather than asserting.

Fixes https://github.com/llvm/llvm-project/issues/54218
Fixes https://github.com/llvm/llvm-project/issues/54233
Fixes https://github.com/llvm/llvm-project/issues/54254
2022-03-07 19:57:26 +00:00
Florian Hahn de8ac485e5
[IVDescriptor] Remove SinkCandidate from SinkAfter before re-sinking.
This ensures the right order in the sink-after map is maintained. If we
re-sink an instruction, it must be sunk after all earlier instructions
have been sunk.

Fixes https://github.com/llvm/llvm-project/issues/54223
2022-03-05 19:48:26 +00:00
Florian Hahn 5a60260efe
[IVDescriptor] Use DT to check order of Previous, OtherPrev.
Previous and OhterPrev may not be in the same block. Use DT::dominates
instead of local comesBefore. DT::dominates is already used earlier to
check the order of Previous and SinkCandidate.

Fixes https://github.com/llvm/llvm-project/issues/54195
2022-03-04 11:07:42 +00:00
Florian Hahn 139215af8e
[IVDescriptor] Find original 'Previous' for first-order recurrences.
This patch extends first-order recurrence handling to support cases
where we already sunk an instruction for a different recurrence, but
LastPrev comes before Previous.

To handle those cases correctly, we need to find the earliest entry for
the sink-after chain, because this is references the Previous from the
original recurrence. This is needed to ensure we use the correct
instruction as sink point.

Depends on D118558.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D118642
2022-03-03 16:41:26 +00:00
serge-sans-paille 71c3a5519d Cleanup includes: LLVMAnalysis
Number of lines output by preprocessor:
before: 1065940348
after:  1065307662

Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D120659
2022-03-01 18:01:54 +01:00
Kerry McLaughlin 12fb133eba [LoopVectorize] Support conditional in-loop vector reductions
Extends getReductionOpChain to look through Phis which may be part of
the reduction chain. adjustRecipesForReductions will now also create a
CondOp for VPReductionRecipe if the block is predicated and not only if
foldTailByMasking is true.

Changes were required in tryToBlend to ensure that we don't attempt
to convert the reduction Phi into a select by returning a VPBlendRecipe.
The VPReductionRecipe will create a select between the Phi and the reduction.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D117580
2022-02-22 12:04:35 +00:00
zhongyunde b2f5164deb [IVDescriptors] Support FOR where we have multiple sink pointed
Handles the case where Previous doesn't come before LastPrev incorrectly.
Fix https://github.com/llvm/llvm-project/issues/53483

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D118558
2022-02-14 09:30:35 +08:00
David Sherwood 1badfbb4fc Fix incorrect TypeSize->uint64_t cast in InductionDescriptor::isInductionPHI
The code was relying upon the implicit conversion of TypeSize to
uint64_t and assuming the type in question was always fixed. However,
I discovered an issue when running the canon-freeze pass with some
IR loops that contains scalable vector types. I've changed the code
to bail out if the size is unknown at compile time, since we cannot
compute whether the step is a multiple of the type size or not.

I added a test here:

  Transforms/CanonicalizeFreezeInLoops/phis.ll

Differential Revision: https://reviews.llvm.org/D118696
2022-02-10 09:39:12 +00:00
Congzhe Cao f3e1f44340 [IVDescriptor] Get the exact FP instruction that does not allow reordering
This is a bugfix in IVDescriptor.cpp.

The helper function `RecurrenceDescriptor::getExactFPMathInst()`
is supposed to return the 1st FP instruction that does not allow
reordering. However, when constructing the RecurrenceDescriptor,
we trace the use-def chain staring from a PHI node and for each
instruction in the use-def chain, its descriptor overrides the
previous one. Therefore in the final RecurrenceDescriptor we
constructed, we lose previous FP instructions that does not allow
reordering.

Reviewed By: kmclaughlin

Differential Revision: https://reviews.llvm.org/D118073
2022-01-27 00:33:46 -05:00
Nikita Popov aa97bc116d [NFC] Remove uses of PointerType::getElementType()
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().

This is part of D117885, in preparation for deprecating the API.
2022-01-25 09:44:52 +01:00
Rosie Sumpter 961f51fdf0 [LoopVectorize][CostModel] Choose smaller VFs for in-loop reductions without loads/stores
For loops that contain in-loop reductions but no loads or stores, large
VFs are chosen because LoopVectorizationCostModel::getSmallestAndWidestTypes
has no element types to check through and so returns the default widths
(-1U for the smallest and 8 for the widest). This results in the widest
VF being chosen for the following example,

float s = 0;
for (int i = 0; i < N; ++i)
  s += (float) i*i;

which, for more computationally intensive loops, leads to large loop
sizes when the operations end up being scalarized.

In this patch, for the case where ElementTypesInLoop is empty, the widest
type is determined by finding the smallest type used by recurrences in
the loop instead of falling back to a default value of 8 bits. This
results in the cost model choosing a more sensible VF for loops like
the one above.

Differential Revision: https://reviews.llvm.org/D113973
2022-01-04 10:12:57 +00:00
Florian Hahn d74a8a78ad
[LV] Mark various functions as const (NFC).
Make sure various accessors do not modify any state, in preparation for
D115111.
2021-12-09 10:51:29 +00:00
Rosie Sumpter c2441b6b89 [LoopVectorize] Add vector reduction support for fmuladd intrinsic
Enables LoopVectorize to handle reduction patterns involving the
llvm.fmuladd intrinsic.

Differential Revision: https://reviews.llvm.org/D111555
2021-11-24 08:50:04 +00:00
Kerry McLaughlin ff64b2933a [LoopVectorize] Check the number of uses of an FAdd before classifying as ordered
checkOrderedReductions looks for Phi nodes which can be classified as in-order,
meaning they can be vectorised without unsafe math. In order to vectorise the
reduction it should also be classified as in-loop by getReductionOpChain, which
checks that the reduction has two uses.

In this patch, a similar check is added to checkOrderedReductions so that we
now return false if there are more than two uses of the FAdd instruction.
This fixes PR52515.

Reviewed By: fhahn, david-arm

Differential Revision: https://reviews.llvm.org/D114002
2021-11-18 16:41:19 +00:00
Florian Hahn 112c1c346a
[IVDescriptor] Make sure the sign is included for negative extension.
At the moment, computeRecurrenceType does not include any sign bits in
the maximum bit width. If the value can be negative, this means the sign
bit will be missing and the sext won't properly extend the value.

If the value can be negative, increment the bitwidth by one to make sure
there is at least one sign bit in the result value.

Note that the increment is also needed *if* the value is *known* to be
negative, as a sign bit needs to be preserved for the sext to work.

Note that this at the moment prevents vectorization, because the
analysis computes i1 as type for the recurrence when looking through the
AND in lookThroughAnd.

Fixes PR51794, PR52485.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D113056
2021-11-15 13:12:57 +00:00
Kazu Hirata 7379736774 [llvm] Use range-based for loops with User::operands (NFC) 2021-11-14 09:32:38 -08:00
David Sherwood 26b7d9d622 [LoopVectorize] Permit vectorisation of more select(cmp(), X, Y) reduction patterns
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:

  int r = a;
  for (int i = 0; i < n; i++) {
    if (src[i] > 3) {
      r = b;
    }
    src[i] += 2;
  }

We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.

The IR generated by clang typically looks like this:

  %phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
  ...
  %pred = icmp ugt i32 %val, i32 3
  %phi.update = select i1 %pred, i32 %b, i32 %phi

We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.

Tests have been added here:

  Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
  Transforms/LoopVectorize/select-cmp-predicated.ll
  Transforms/LoopVectorize/select-cmp.ll

Differential Revision: https://reviews.llvm.org/D108136
2021-10-11 09:41:38 +01:00
Krasimir Georgiev 685f1bfd0a Revert "[LoopVectorize] Permit vectorisation of more select(cmp(), X, Y) reduction patterns"
It appears to cause stage2 clang build failures, e.g.,
https://lab.llvm.org/buildbot/#/builders/74/builds/7145.

This reverts commit 1fb37334bd.
2021-10-01 11:39:43 +02:00
David Sherwood 1fb37334bd [LoopVectorize] Permit vectorisation of more select(cmp(), X, Y) reduction patterns
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:

  int r = a;
  for (int i = 0; i < n; i++) {
    if (src[i] > 3) {
      r = b;
    }
    src[i] += 2;
  }

We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.

The IR generated by clang typically looks like this:

  %phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
  ...
  %pred = icmp ugt i32 %val, i32 3
  %phi.update = select i1 %pred, i32 %b, i32 %phi

We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.

Tests have been added here:

  Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
  Transforms/LoopVectorize/select-cmp-predicated.ll
  Transforms/LoopVectorize/select-cmp.ll

Differential Revision: https://reviews.llvm.org/D108136
2021-10-01 08:41:03 +01:00
David Green 61cc873a8e [LV] Recognize intrinsic min/max reductions
This extends the reduction logic in the vectorizer to handle intrinsic
versions of min and max, both the floating point variants already
created by instcombine under fastmath and the integer variants from
D98152.

As a bonus this allows us to match a chain of min or max operations into
a single reduction, similar to how add/mul/etc work.

Differential Revision: https://reviews.llvm.org/D109645
2021-09-15 10:45:50 +01:00
Nikita Popov 02f74eadbe [IVDescriptors] Make pointer inductions compatible with opaque pointers
Store the used element type in the InductionDescriptor. For typed
pointers, it remains the pointer element type. For opaque pointers,
we always use an i8 element type, such that the step is a simple
offset.

A previous version of this patch instead tried to guess the element
type from an induction GEP, but this is not reliable, as the GEP
may be hidden (see @both in iv_outside_user.ll).

Differential Revision: https://reviews.llvm.org/D104795
2021-09-01 21:02:05 +02:00
Kerry McLaughlin 9d35594993 Reland "[LV] Use lookThroughAnd with logical reductions"
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:

  for.body:
    %phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
    %mask = and i32 %phi, 255
    %gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
    %load = load i8, i8* %gep
    %ext = zext i8 %load to i32
    %and = and i32 %mask, %ext
    ...

^ this will generate an and reduction intrinsic such as the following:
    call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)

The same example for an add instruction would create an intrinsic of type i8:
    call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)

This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.

Reviewed By: david-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D105632
2021-07-30 18:04:09 +01:00
Anna Thomas 68ffed12b7 [IVDescriptors] Fix bug in checkOrderedReduction
The Exit instruction passed in for checking if it's an ordered reduction need not be
an FPAdd operation. We need to bail out at that point instead of
assuming it is an FPAdd (and hence has two operands). See added testcase.
It crashes without the patch because the Exit instruction is a phi with
exactly one operand.
This latent bug was exposed by 95346ba which added support for
multi-exit loops for vectorization.

Reviewed-By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D106843
2021-07-27 09:31:44 -04:00
Kerry McLaughlin be753b207f Revert "[LV] Use lookThroughAnd with logical reductions"
Reverting patch due to buildbot failures.

This reverts commit e22a599672.
2021-07-21 15:16:00 +01:00
Kerry McLaughlin e22a599672 [LV] Use lookThroughAnd with logical reductions
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:

  for.body:
    %phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
    %mask = and i32 %phi, 255
    %gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
    %load = load i8, i8* %gep
    %ext = zext i8 %load to i32
    %and = and i32 %mask, %ext
    ...

^ this will generate an and reduction intrinsic such as the following:
    call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)

The same example for an add instruction would create an intrinsic of type i8:
    call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)

This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.

Reviewed By: david-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D105632
2021-07-21 09:56:00 +01:00
Paul Walker 287d39dd5a [NFC] Fix a few whitespace issues and typos. 2021-07-04 11:49:58 +01:00
Florian Hahn aa00b1d763
[LV] Try to sink users recursively for first-order recurrences.
Update isFirstOrderRecurrence to  explore all uses of a recurrence phi
and check if we can sink them. If there are multiple users to sink, they
are all mapped to the previous instruction.

Fixes PR44286 (and another PR or two).

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D84951
2021-05-31 19:55:33 +01:00
Serge Guelton d6de1e1a71 Normalize interaction with boolean attributes
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from

        if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")

to

        if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")

Introduce a getValueAsBool that normalize the check, with the following
behavior:

no attributes or attribute set to "false" => return false
attribute set to "true" => return true

Differential Revision: https://reviews.llvm.org/D99299
2021-04-17 08:17:33 +02:00
Kerry McLaughlin 7344f3d39a [LoopVectorize] Add strict in-order reduction support for fixed-width vectorization
Previously we could only vectorize FP reductions if fast math was enabled, as this allows us to
reorder FP operations. However, it may still be beneficial to vectorize the loop by moving
the reduction inside the vectorized loop and making sure that the scalar reduction value
be an input to the horizontal reduction, e.g:

  %phi = phi float [ 0.0, %entry ], [ %reduction, %vector_body ]
  %load = load <8 x float>
  %reduction = call float @llvm.vector.reduce.fadd.v8f32(float %phi, <8 x float> %load)

This patch adds a new flag (IsOrdered) to RecurrenceDescriptor and makes use of the changes added
by D75069 as much as possible, which already teaches the vectorizer about in-loop reductions.
For now in-order reduction support is off by default and controlled with the `-enable-strict-reductions` flag.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D98435
2021-04-06 14:45:34 +01:00
Kerry McLaughlin 857b8a73da [LoopVectorize] Change the identity element for FAdd
Changes getRecurrenceIdentity to always return a neutral value of -0.0 for FAdd.

Reviewed By: dmgreen, spatel

Differential Revision: https://reviews.llvm.org/D98963
2021-04-06 12:13:43 +01:00
Sanjay Patel b3a33553ae [Analysis][LoopVectorize] rename "Unsafe" variables/methods; NFC
We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.

I also removed one getter method by rolling the null check into
the access. Further simplification seems possible.

The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.
2021-03-04 08:53:04 -05:00
Sanjay Patel b3f0c2653b [Analysis] simplify propagation of FMF in recurrences; NFC
This is a mess, but this is hopefully no-functional-change.
The 'Prev' descriptor is only used for min/max recurrences
or when starting a match from a phi, so it should not be a
factor when propagating FMF for fmul/fadd.

The API is confusing (and should be reduced in subsequent steps)
because the "UnsafeAlgebraInst" appears to actually be a placeholder
for a recurrence that does NOT have FMF, but we still want to
treat it as reassociative.
2021-03-03 17:28:10 -05:00
Kazu Hirata 896d0e1a2a [Analysis] Use range-based for loops (NFC) 2021-02-22 20:17:18 -08:00
Sanjay Patel 5b250a27ec [Analysis][LoopVectorize] do not form reductions of pointers
This is a fix for https://llvm.org/PR49215 either before/after
we make a verifier enhancement for vector reductions with D96904.

I'm not sure what the current thinking is for pointer math/logic
in IR. We allow icmp on pointer values. Therefore, we match min/max
patterns, so without this patch, the vectorizer could form a vector
reduction from that sequence.

But the LangRef definitions for min/max and vector reduction
intrinsics do not allow pointer types:
https://llvm.org/docs/LangRef.html#llvm-smax-intrinsic
https://llvm.org/docs/LangRef.html#llvm-vector-reduce-umax-intrinsic

So we would crash/assert at some point - either in IR verification,
in the cost model, or in codegen. If we do want to allow this kind
of transform, we will need to update the LangRef and all of those
parts of the compiler.

Differential Revision: https://reviews.llvm.org/D97047
2021-02-19 14:01:57 -05:00
Kerry McLaughlin 5fe1593438 [LoopVectorizer] Require no-signed-zeros-fp-math=true for fmin/fmax
Currently, setting the `no-nans-fp-math` attribute to true will allow
loops with fmin/fmax to vectorize, though we should be requiring that
`no-signed-zeros-fp-math` is also set.

This patch adds the check for no-signed-zeros at the function level and includes
tests to make sure we don't vectorize functions with only one of the attributes
associated.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D96604
2021-02-15 13:47:05 +00:00
Fangrui Song 0fa61304d2 [LoopVectorize] Relax a FCmpInst assert to dyn_cast after D95690
The instruction may be `icmp eq i32`. Noticed in an internal Halide+wasm JIT test.
2021-02-01 19:28:45 -08:00
Sanjay Patel bbed5f2f8a [LoopVectorize] improve IR fast-math-flags propagation in reductions
This is another step (see D95452) towards correcting fast-math-flags
bugs in vector reductions.

There are multiple bugs visible in the test diffs, and this is still
not working as it should. We still use function attributes (rather
than FMF) to drive part of the logic, but we are not checking for
the correct FP function attributes.

Note that FMF may not be propagated optimally on selects (example
in https://llvm.org/PR35607 ). That's why I'm proposing to union the
FMF of a fcmp+select pair and avoid regressions on existing vectorizer
tests.

Differential Revision: https://reviews.llvm.org/D95690
2021-02-01 16:21:36 -05:00
Kazu Hirata 16baad8f4e [llvm] Use pop_back_val (NFC) 2021-01-24 12:18:57 -08:00
Sanjay Patel 36263a7ccc [LoopUtils] remove redundant opcode parameter; NFC
While here, rename the inaccurate getRecurrenceBinOp()
because that was also used to get CmpInst opcodes.

The recurrence/reduction kind should always refer to the
expected opcode for a reduction. SLP appears to be the
only direct caller of createSimpleTargetReduction(), and
that calling code ideally should not be carrying around
both an opcode and a reduction kind.

This should allow us to generalize reduction matching to
use intrinsics instead of only binops.
2021-01-04 17:05:28 -05:00
Sanjay Patel c74e8539ff [Analysis] flatten enums for recurrence types
This is almost all mechanical search-and-replace and
no-functional-change-intended (NFC). Having a single
enum makes it easier to match/reason about the
reduction cases.

The goal is to remove `Opcode` from reduction matching
code in the vectorizers because that makes it harder to
adapt the code to handle intrinsics.

The code in RecurrenceDescriptor::AddReductionVar() is
the only place that required closer inspection. It uses
a RecurrenceDescriptor and a second InstDesc to sometimes
overwrite part of the struct. It seem like we should be
able to simplify that logic, but it's not clear exactly
which cmp+sel patterns that we are trying to handle/avoid.
2021-01-01 12:20:16 -05:00
Sanjay Patel eaab71106b [Analysis] reduce code for matching min/max; NFC
This might also make it easier to adapt if we want
to match min/max intrinsics rather than cmp+sel idioms.

The 'const' part is to potentially avoid confusion
in calling code. There's some surprising and possibly
wrong behavior related to matching min/max reductions
differently than other reductions.
2020-12-31 17:19:37 -05:00
Kazu Hirata ed6a135246 [IVDescriptors] Remove getConsecutiveDirection (NFC)
The last use of the function was removed on Sep 18, 2016 in commit
5f8cc0c346.

The function was later moved to llvm/lib/Analysis/IVDescriptors.cpp on
Sep 12, 2018 in commit 7e98d69847.
2020-12-17 20:19:15 -08:00
dfukalov 2ce38b3f03 [NFC] Reduce include files dependency.
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D92489
2020-12-03 18:25:05 +03:00
Yichao Yu 4bc88a0e9a Enable support for floating-point division reductions
Similar to fsub, fdiv can also be vectorized using fmul.

Also http://llvm.org/viewvc/llvm-project?view=revision&revision=215200

Differential Revision: https://reviews.llvm.org/D34078

Co-authored-by: Jameson Nash <jameson@juliacomputing.com>
2020-11-23 20:00:58 -05:00
David Green be6e8e50f4 [LV] Tail folded inloop reductions.
This expands upon the inloop reductions added in e9761688e41cb9e976,
allowing them to be inserted into tail folded loops. Reductions are
generates with the form:

  x = select(mask, vecop, zero)
  v = vecreduce.add(x)
  c = add chain, v

Where zero here is chosen as the identity value for add reductions. The
backend is then expected to fold the select and the vecreduce into a
single predicated instruction.

Most of the code is fairly straight forward, except for the creation of
blockmasks which need to ensure they are created in dominance order. The
order they are added is altered to be after any phis, keeping the
requirements for the underlying IR.

Differential Revision: https://reviews.llvm.org/D84451
2020-10-11 16:58:34 +01:00
David Green 745bf6cf44 [LoopVectorizer] Inloop vector reductions
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.

In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).

Differential Revision: https://reviews.llvm.org/D75069
2020-08-06 10:10:50 +01:00
Jordan Rupprecht 3c39db0c44 Revert "[LoopVectorizer] Inloop vector reductions"
This reverts commit e9761688e4. It breaks the build:

```
~/src/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp:868:10: error: no viable conversion from returned value of type 'SmallVector<[...], 8>' to function return type 'SmallVector<[...], 4>'
  return ReductionOperations;
```
2020-08-05 10:24:15 -07:00
David Green e9761688e4 [LoopVectorizer] Inloop vector reductions
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.

In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).

Differential Revision: https://reviews.llvm.org/D75069
2020-08-05 18:14:05 +01:00
Nikita Popov a5eb1236e3 [IVDescriptors] Remove unnecessary DemandedBits.h include; NFC
Forward declare DemandedBits in IVDescriptors, and move include
into the cpp file. Also drop the include from LoopUtils, which
does not need it at all.
2020-04-04 12:07:57 +02:00
Florian Hahn 99f74a64a2 [SCEV] Remove unused ScalarEvolutionExpander.h includes (NFC). 2020-01-04 18:29:35 +00:00