Add API for specifying which `LLVMContext` each `lto_module_t` and
`lto_code_gen_t` is in.
In particular, this enables the following flow:
for (auto &File : Files) {
lto_module_t M = lto_module_create_in_local_context(File...);
querySymbols(M);
lto_module_dispose(M);
}
lto_code_gen_t CG = lto_codegen_create_in_local_context();
for (auto &File : FilesToLink) {
lto_module_t M = lto_module_create_in_codegen_context(File..., CG);
lto_codegen_add_module(CG, M);
lto_module_dispose(M);
}
lto_codegen_compile(CG);
lto_codegen_write_merged_modules(CG, ...);
lto_codegen_dispose(CG);
This flow has a few benefits.
- Only one module (two if you count the combined module in the code
generator) is in memory at a time.
- Metadata (and constants) from files that are parsed to query symbols
but not linked into the code generator don't pollute the global
context.
- The first for loop can be parallelized, since each module is in its
own context.
- When the code generator is disposed, the memory from LTO gets freed.
rdar://problem/18767512
llvm-svn: 221733
This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.
The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could). Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).
llvm-svn: 217344
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
llvm-svn: 213864
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.
llvm-svn: 213396
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
llvm-svn: 213385
After a number of previous small iterations, the functions
llvm_start_multithreaded() and llvm_stop_multithreaded() have
been reduced essentially to no-ops. This change removes them
entirely.
Reviewed by: rnk, dblaikie
Differential Revision: http://reviews.llvm.org/D4216
llvm-svn: 211287
This patch removes the functions llvm_start_multithreaded() and
llvm_stop_multithreaded(), and changes llvm_is_multithreaded()
to return a constant value based on the value of the compile-time
definition LLVM_ENABLE_THREADS.
Previously, it was possible to have compile-time support for
threads on, and runtime support for threads off, in which case
certain mutexes were not allocated or ever acquired. Now, if the
build is created with threads enabled, mutexes are always acquired.
A test before/after patch of compiling a very large TU showed no
noticeable performance impact of this change.
Reviewers: rnk
Differential Revision: http://reviews.llvm.org/D4076
llvm-svn: 210600
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
llvm-svn: 210280
Sometimes a LLVM compilation may take more time then a client would like to
wait for. The problem is that it is not possible to safely suspend the LLVM
thread from the outside. When the timing is bad it might be possible that the
LLVM thread holds a global mutex and this would block any progress in any other
thread.
This commit adds a new yield callback function that can be registered with a
context. LLVM will try to yield by calling this callback function, but there is
no guaranteed frequency. LLVM will only do so if it can guarantee that
suspending the thread won't block any forward progress in other LLVM contexts
in the same process.
Once the client receives the call back it can suspend the thread safely and
resume it at another time.
Related to <rdar://problem/16728690>
llvm-svn: 208945
This allows code to statically accept a Function or a GlobalVariable, but
not an alias. This is already a cleanup by itself IMHO, but the main
reason for it is that it gives a lot more confidence that the refactoring to fix
the design of GlobalAlias is correct. That will be a followup patch.
llvm-svn: 208716
This commit provides the necessary C/C++ APIs and infastructure to enable fine-
grain progress report and safe suspension points after each pass in the pass
manager.
Clients can provide a callback function to the pass manager to call after each
pass. This can be used in a variety of ways (progress report, dumping of IR
between passes, safe suspension of threads, etc).
The run listener list is maintained in the LLVMContext, which allows a multi-
threaded client to be only informed for it's own thread. This of course assumes
that the client created a LLVMContext for each thread.
This fixes <rdar://problem/16728690>
llvm-svn: 207430
This adds support for an -mattr option to the gold plugin and to llvm-lto. This
allows the caller to specify details of the subtarget architecture, like +aes,
or +ssse3 on x86. Note that this requires a change to the include/llvm-c/lto.h
interface: it adds a function lto_codegen_set_attr and it increments the
version of the interface.
llvm-svn: 207279
We normally don't drop functions from the C API's, but in this case I think we
can:
* The old implementation of getFileOffset was fairly broken
* The introduction of LLVMGetSymbolFileOffset was itself a C api breaking
change as it removed LLVMGetSymbolOffset.
* It is an incredibly specialized use case. The only reason MCJIT needs it is
because of its odd position of being a dynamic linker of .o files.
llvm-svn: 206750
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
llvm-svn: 205090
selfhost.
The 'Core.h' C-API header is part of the IR LLVM library. (One might
even argue it should be called IR.h, but that's a separate point.) We
can't include it into a Support header without violating the layering,
and in a way that breaks modules. MemoryBuffer's opaque C type was being
defined in the Core.h C-API header despite being in the Support library,
and thus we ended up with this weird issue.
It turns out that there were other constructs from the Support library
in the Core.h header. This patch lifts all of them into Support.h and
then includes that into Core.h.
The only possible fallout is if someone was including Support.h and
relying on Core.h to be visible for their own uses. Considering the
narrow interface actually provided by the C-API for the Support library,
this seems a very, very unlikely mistake.
llvm-svn: 203071
A 'remark' is information that is not an error or a warning, but rather some
additional information provided to the user. In contrast to a 'note' a 'remark'
is an independent diagnostic, whereas a 'note' always depends on another
diagnostic.
A typical use case for remark nodes is information provided to the user, e.g.
information provided by the vectorizer about loops that have been vectorized.
llvm-svn: 202474
This function adds an extra path argument to lto_module_create_from_memory.
The path argument will be passed to makeBuffer to make sure the MemoryBuffer
has a name and the created module has a module identifier.
This is mainly for emitting warning messages from the linker. When we emit
warning message on a module, we can use the module identifier.
rdar://15985737
llvm-svn: 201114
This patch adds the target analysis passes (usually TargetTransformInfo) to the
codgen pipeline. We also expose now the AddAnalysisPasses method through the C
API, because the optimizer passes would also benefit from better target-specific
cost models.
Reviewed by Andrew Kaylor
llvm-svn: 199926
Adding a doxygen comment for each bit of API to indicate at which
LTO_API_VERSION each was available, manually gleaned from successive
git-blames. A few notes:
- LTO_API_VERSION was set to 3 at its introduction.
- I've indicated all the API introduced before LTO_API_VERSION was
around as available "prior to LTO_API_VERSION=3".
- A number of API changes neglected to bump LTO_API_VERSION. These I've
indicated as available at the *next* bump of LTO_API_VERSION.
llvm-svn: 199429
Add a hook in the C API of LTO so that clients of the code generator can set
their own handler for the LLVM diagnostics.
The handler is defined like this:
typedef void (*lto_diagnostic_handler_t)(lto_codegen_diagnostic_severity_t
severity, const char *diag, void *ctxt)
- severity says how bad this is.
- diag is a string that contains the diagnostic message.
- ctxt is the registered context for this handler.
This hook is more general than the lto_get_error_message, since this function
keeps only the latest message and can only be queried when something went wrong
(no warning for instance).
<rdar://problem/15517596>
llvm-svn: 199338
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll. The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")). This commit
fixes the bug.
The original commit message follows.
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
llvm-svn: 199244
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199218
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199204
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
llvm-svn: 199191
SymbolLookUp() call back to return a demangled C++ name to
be used as a comment.
For example darwin's otool(1) program the uses the llvm
disassembler now can produce disassembly like:
callq __ZNK4llvm6Target20createMCDisassemblerERKNS_15MCSubtargetInfoE ## llvm::Target::createMCDisassembler(llvm::MCSubtargetInfo const&) const
Also fix a bug in LLVMDisasmInstruction() that was not flushing
the raw_svector_ostream for the disassembled instruction string
before copying it to the output buffer that was causing truncation
of the output.
rdar://10173828
llvm-svn: 198637
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI. It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied. This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.
This patch adds basic IR support, docs, and verification. It does not
attempt to implement any lowering or fix any possibly broken transforms.
When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .
Differential Revision: http://llvm-reviews.chandlerc.com/D2173
llvm-svn: 197645
This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:
for (int i = 0; i < 3200; i += 5) {
a[i] += alpha * b[i];
a[i + 1] += alpha * b[i + 1];
a[i + 2] += alpha * b[i + 2];
a[i + 3] += alpha * b[i + 3];
a[i + 4] += alpha * b[i + 4];
}
and turn them into this:
for (int i = 0; i < 3200; ++i) {
a[i] += alpha * b[i];
}
and loops like this:
for (int i = 0; i < 500; ++i) {
x[3*i] = foo(0);
x[3*i+1] = foo(0);
x[3*i+2] = foo(0);
}
and turn them into this:
for (int i = 0; i < 1500; ++i) {
x[i] = foo(0);
}
There are two motivations for this transformation:
1. Code-size reduction (especially relevant, obviously, when compiling for
code size).
2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.
The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.
This pass is not currently enabled by default at any optimization level.
llvm-svn: 194939
stack traces by default if you use PrettyStackTraceProgram, so that existing LLVM-based
tools will continue to get it without any changes.
llvm-svn: 193971
linkonce_odr_auto_hide was in incomplete attempt to implement a way
for the linker to hide symbols that are known to be available in every
TU and whose addresses are not relevant for a particular DSO.
It was redundant in that it all its uses are equivalent to
linkonce_odr+unnamed_addr. Unlike those, it has never been connected
to clang or llvm's optimizers, so it was effectively dead.
Given that nothing produces it, this patch just nukes it
(other than the llvm-c enum value).
llvm-svn: 193865
Objective-C data structures.
This is allows tools such as darwin's otool(1) that uses the
LLVM disassembler take a pointer value being loaded by
an instruction and add a comment to what it is being referenced
to make following disassembly of Objective-C programs
more readable.
For example disassembling the Mac OS X TextEdit app one
will see comments like the following:
movq 0x20684(%rip), %rsi ## Objc selector ref: standardUserDefaults
movq 0x21985(%rip), %rdi ## Objc class ref: _OBJC_CLASS_$_NSUserDefaults
movq 0x1d156(%rip), %r14 ## Objc message: +[NSUserDefaults standardUserDefaults]
leaq 0x23615(%rip), %rdx ## Objc cfstring ref: @"SelectLinePanel"
callq 0x10001386c ## Objc message: -[[%rdi super] initWithWindowNibName:]
These diffs also include putting quotes around C strings
in literal pools and uses "symbol address" in the comment
when adding a symbol name to the comment to tell these
types of references apart:
leaq 0x4f(%rip), %rax ## literal pool for: "Hello world"
movq 0x1c3ea(%rip), %rax ## literal pool symbol address: ___stack_chk_guard
Of course the easy changes are in the LLVM disassembler and
the hard work is up to the implementer of the SymbolLookUp()
call back.
rdar://10602439
llvm-svn: 193833
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
files.
* The linker tells LLVM which symbols are not used from other object files,
but will be put in the dso symbol table if present.
GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.
LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.
This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.
llvm-svn: 193800
This reverts commit r193255 and instead creates an lto_bool_t typedef
that points to bool, _Bool, or unsigned char depending on what is
available. Only recent versions of MSVC provide a stdbool.h header.
Reviewers: rafael.espindola
Differential Revision: http://llvm-reviews.chandlerc.com/D2019
llvm-svn: 193377
All of the Core API functions have versions which accept explicit context, in
addition to ones which work on global context. This commit adds functions
which accept explicit context to the Target API for consistency.
Patch by Peter Zotov
Differential Revision: http://llvm-reviews.chandlerc.com/D1912
llvm-svn: 192913
I expose the API with some caveats:
- The C++ API involves a traditional void* opaque pointer for the fatal
error callback. The C API doesn’t do this. I don’t think that the void*
opaque pointer makes any sense since this is a global callback - there will
only be one of them. So if you need to pass some data to your callback,
just put it in a global variable.
- The bindings will ignore the gen_crash_diag boolean. I ignore it because
(1) I don’t know what it does, (2) it’s not documented AFAIK, and (3) I
couldn’t imagine any use for it. I made the gut call that it probably
wasn’t important enough to expose through the C API.
llvm-svn: 192864
The C API currently allows to dump values (LLVMDumpValue), but a similar method for types was not exported.
Patch by Peter Zotov
Differential Revision: http://llvm-reviews.chandlerc.com/D1911
llvm-svn: 192852