Instead of asking the user to specify a single file to output coverage
info and defaulting to STDOUT, llvm-cov now creates files for each
source file with a naming system of: <source filename> + ".llcov".
This is what gcov does and although it can clutter the working directory
with numerous coverage files, it will be easier to hook the llvm-cov
output to tools which operate on this assumption (such as lcov).
llvm-svn: 196184
Add a helper function getDebugInfoVersionFromModule to return the debug info
version number for a module.
"Verifier/module-flags-1.ll" checks for verification errors.
It will seg fault when calling getDebugInfoVersionFromModule because of the
incorrect format for module flags in the testing case. We make
getModuleFlagsMetadata more robust by checking for error conditions.
PR17982
llvm-svn: 196158
The profile file parser needed some tests for its parsing actions.
This adds tests for each of the error messages emitted by the parser.
llvm-svn: 196106
eliminateFrameIndex() has been reworked to handle both small & large frames
with either a FP or SP.
An additional Slot is required for Scavenging spills when not using FP for large frames.
Reworked the handling of Register Scavenging.
Whether we are using an FP or not, whether it is a large frame or not,
and whether we are using a large code model or not are now independent.
llvm-svn: 196091
These are used by MachO only at the moment, and (much like the existing
MOVW/MOVT set) work around the fact that the labels used in the actual
instructions often contain PC-dependent components, which means that repeatedly
materialising the same global can't be CSEed.
With small modifications, it could be adapted to how ELF finds the address of
_GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there.
llvm-svn: 196090
When using large code model:
Global objects larger than 'CodeModelLargeSize' bytes are placed in sections named with a trailing ".large"
The folded global address of such objects are lowered into the const pool.
During inspection it was noted that LowerConstantPool() was using a default offset of zero.
A fix was made, but due to only offsets of zero being generated, testing only verifies the change is not detrimental.
Correct the flags emitted for explicitly specified sections.
We assume the size of the object queried by getSectionForConstant() is never greater than CodeModelLargeSize.
To handle greater than CodeModelLargeSize, changes to AsmPrinter would be required.
llvm-svn: 196087
Large frame offsets are loaded from the ConstantPool.
Where possible, offsets are encoded using the smaller MKMSK instruction.
Large frame offsets can only be used when there is a frame-pointer.
llvm-svn: 196085
Previously, we clobbered callee-saved registers when folding an "add
sp, #N" into a "pop {rD, ...}" instruction. This change checks whether
a register we're going to add to the "pop" could actually be live
outside the function before doing so and should fix the issue.
This should fix PR18081.
llvm-svn: 196046
Convert this test to FileCheck, and improve it to check for the instructions it
is trying to exclude instead of checking for register use (especially because
grepping for r1 can be thrown off, for example, by a use of r12).
llvm-svn: 195979
Some of these tests did not specify a cpu but were also sensitive to
instruction scheduling and/or register assignment choices. A few others
similarly-sensitive tests specified a cpu (often the POWER7), and while the P7
currently uses the default model for PPC64, this will soon change. For those
tests which should not really be cpu-dependent anyway, the cpu is set to the
generic 'ppc64'.
llvm-svn: 195977
This prevents the compiler from emitting invalid ld.[bhwd]'s and st.[bhwd]'s
when the stack frame is between 512 and 32,768 bytes in size.
llvm-svn: 195973
in constant islands for Mips16. We introdcuce JalB16 as a synomnym
for Jal16. It makes it easier to read and is also necessary because
Jal16 is a call instruction but JalB16 is being used as a branch.
Various parts of LLVM will not work properly even in this late stage of
the backend if we use what was declared as a call instruction to function
as a branch. For one, basic block labels may not get emitted in some
situations.
llvm-svn: 195968
conditional branches for very large targets. That will be the next small
patch. Everything now should in principle work as good (functionality
wise) as without constant islands so we decided at Mips/Imagination to
make constant islands the default for Mips16 now so that it will get
excercised a lot and this port is still experimentatl though hopefully soon
we will change the status. Some more cleanup and code review is in order
but things are converging fast.
llvm-svn: 195902
ARanges included even extern variables referenced by pointer non-type
template parameters even though that variable isn't part of this
compilation unit.
llvm-svn: 195895
make PIC calls a little more efficient:
1. Remove instructions setting up $gp if it is known that a function has been
called at least once.
2. Save the address of a called function in a register instead of loading
it from the GOT at every call site.
llvm-svn: 195892
SGPRs are spilled into VGPRs using the {READ,WRITE}LANE_B32 instructions.
v2:
- Fix encoding of Lane Mask
- Use correct register flags, so we don't overwrite the low dword
when restoring multi-dword registers.
v3:
- Register spilling seems to hang the GPU, so replace all shaders
that need spilling with a dummy shader.
v4:
- Fix *LANE definitions
- Change destination reg class for 32-bit SMRD instructions
v5:
- Remove small optimization that was crashing Serious Sam 3.
https://bugs.freedesktop.org/show_bug.cgi?id=68224https://bugs.freedesktop.org/show_bug.cgi?id=71285
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195880
Writing to the M0 register from an SMRD instruction hangs the GPU, so
we need to use the SGPR_32 register class, which does not include M0.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195879
We currently error in clang with:
"error: thread-local storage is unsupported for the current target", but we
can start to get the llvm level ready.
When compiling
template<typename T>
struct foo {
static __declspec(thread) int bar;
};
template<typename T>
__declspec(therad) int foo<T>::bar;
template struct foo<int>;
msvc produces
SECTION HEADER #3
.tls$ name
0 physical address
0 virtual address
4 size of raw data
12F file pointer to raw data (0000012F to 00000132)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers
C0301040 flags
Initialized Data
COMDAT; sym= "public: static int foo<int>::bar" (?bar@?$foo@H@@2HA)
4 byte align
Read Write
gcc produces a ".data$__emutls_v.<symbol>" for the testcase with
__declspec(thread) replaced with thread_local.
llvm-svn: 195849
It is only used for asm printing.
On X86 we put basic block addresses on register before passing them to inline
asm, so the MO_MachineBasicBlock case was dead.
MO_ExternalSymbol was dead since any symbol being passed to inline asm
is represented as MO_GlobalAddress.
The MO_GlobalAddress and MO_Register cases were not tested.
llvm-svn: 195824
With this patch we use simple names for COMDAT sections (like .text or .bss).
This matches the MSVC behavior.
When merging it is the COMDAT symbol that is used to decide if two sections
should be merged, so there is no point in building a fancy name.
This survived a bootstrap on mingw32.
llvm-svn: 195798
In signed arithmetic we could end up with an i64 trip count for an i32 phi.
Because it is signed arithmetic we know that this is only defined if the i32
does not wrap. It is therefore safe to truncate the i64 trip count to a i32
value.
Fixes PR18049.
llvm-svn: 195787
- Fix bug in (vsext (vzext x)) -> (vsext x) in SIGN_EXTEND_IN_REG
lowering where we need to check whether x is a vector type (in-reg
type) of i8, i16 or i32; otherwise, that optimization is not valid.
llvm-svn: 195779
we generate PHI nodes with multiple entries from the same basic block but
with different values. Enabling CSE on ExtractElement instructions make sure
that all of the RAUWed instructions are the same.
llvm-svn: 195773
Short description.
This issue is about case of treating pointers as integers.
We treat pointers as different if they references different address space.
At the same time, we treat pointers equal to integers (with machine address
width). It was a point of false-positive. Consider next case on 32bit machine:
void foo0(i32 addrespace(1)* %p)
void foo1(i32 addrespace(2)* %p)
void foo2(i32 %p)
foo0 != foo1, while
foo1 == foo2 and foo0 == foo2.
As you can see it breaks transitivity. That means that result depends on order
of how functions are presented in module. Next order causes merging of foo0
and foo1: foo2, foo0, foo1
First foo0 will be merged with foo2, foo0 will be erased. Second foo1 will be
merged with foo2.
Depending on order, things could be merged we don't expect to.
The fix:
Forbid to treat any pointer as integer, except for those, who belong to address space 0.
llvm-svn: 195769
We would wrongly transform the testcase into the equivalent of an AND with 1.
The problem was that, when testing whether the shifted-in bits of the right
shift were significant, we used the width of the final zero-extended result
rather than the width of the shifted value.
llvm-svn: 195731
A Direct stack map location records the address of frame index. This
address is itself the value that the runtime requested. This differs
from IndirectMemRefOp locations, which refer to a stack locations from
which the requested values must be loaded. Direct locations can
directly communicate the address if an alloca, while IndirectMemRefOp
handle register spills.
For example:
entry:
%a = alloca i64...
llvm.experimental.stackmap(i32 <ID>, i32 <shadowBytes>, i64* %a)
Since both the alloca and stackmap intrinsic are in the entry block,
and the intrinsic takes the address of the alloca, the runtime can
assume that LLVM will not substitute alloca with any intervening
value. This must be verified by the runtime by checking that the stack
map's location is a Direct location type. The runtime can then
determine the alloca's relative location on the stack immediately after
compilation, or at any time thereafter. This differs from Register and
Indirect locations, because the runtime can only read the values in
those locations when execution reaches the instruction address of the
stack map.
llvm-svn: 195712
The dumper was only dumping one pubtypes set and it was /always/ dumping
one pubtypes set even when there were zero sets. Now that the dumper
correctly dumps zero, one, or many sets, we can update this test case to
test for the absolute absence of a set rather than a bogus/accidental
zero-valued set.
llvm-svn: 195706
Patch by Mikulas Patocka. I added the test. I checked that for cpu names that
gas knows about, it also doesn't generate nopl.
The modified cpus:
i686 - there are i686-class CPUs that don't have nopl: Via c3, Transmeta
Crusoe, Microsoft VirtualBox - see
https://bbs.archlinux.org/viewtopic.php?pid=775414
k6, k6-2, k6-3, winchip-c6, winchip2 - these are 586-class CPUs
via c3 c3-2 - see https://bugs.archlinux.org/task/19733 as a proof that
Via c3 and c3-Nehemiah don't have nopl
llvm-svn: 195679
This patch fixes a bug in the assembler that was causing bad code to
be emitted. When switching modes in an assembly file (e.g. arm to
thumb mode) we would always emit the opcode from the original mode.
Consider this small example:
$ cat align.s
.code 16
foo:
add r0, r0
.align 3
add r0, r0
$ llvm-mc -triple armv7-none-linux align.s -filetype=obj -o t.o
$ llvm-objdump -triple thumbv7 -d t.o
Disassembly of section .text:
foo:
0: 00 44 add r0, r0
2: 00 f0 20 e3 blx #4195904
6: 00 00 movs r0, r0
8: 00 44 add r0, r0
This shows that we have actually emitted an arm nop (e320f000)
instead of a thumb nop. Unfortunately, this encodes to a thumb
branch which causes bad things to happen when compiling assembly
code with align directives.
The fix is to notify the ARMAsmBackend when we switch mode. The
MCMachOStreamer was already doing this correctly. This patch makes
the same change for the MCElfStreamer.
There is still a bug in the way nops are emitted for alignment
because the MCAlignment fragment does not store the correct mode.
The ARMAsmBackend will emit nops for the last mode it knew about. In
the example above, we still generate an arm nop if we add a `.code
32` to the end of the file.
PR18019
llvm-svn: 195677
These should not use COMDATs. GNU as uses .bss for .lcomm and section 0 for
.comm.
Given
static int a;
int b;
MSVC puts both in .bss. This patch then puts both .comm and .lcomm on .bss. With
this change we agree with gas on .lcomm, are much closer on .comm and clang-cl
matches msvc on the above example.
llvm-svn: 195654
Summary:
Moved the requirement for SelectionDAG::getConstant() to return legally
typed nodes slightly earlier. There were two optional DAGCombine passes
that were missed out and were required to produce type-legal DAGs.
Simplified a code-path in tryFoldToZero() to use SelectionDAG::getConstant().
This provides support for both promoted and expanded vector types whereas the
previous code only supported promoted vector types.
Fixes a "Type for zero vector elements is not legal" assertion detected by
an llvm-stress generated test.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2251
llvm-svn: 195635
to what is needed for constant islands. The prescan method for Mips16 constant
islands will eventually go away. It is only temporary and should be done
earlier when the instructions are first created or from the DAG. If we keep
it here we need to handle better the situation where constant islands
is called multiple times since don't want to prescan more than once.
llvm-svn: 195569
I had to move some code and I moved a declaration forward past it's first use
in the function but by nutty coincidence there was another variable of the same
name and type and with completely unrelated function that was declared globally
in the class so no compilation error ensued.
It required some unusual conditions for it to even matter. Caused test
case casts.c in test-suite to fail during compilation with a duplicate
symbol error. I would have noticed it during final code review for this port.
llvm-svn: 195565
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
Make tests more robust by removing hard-coded metadata numbers in CHECK lines.
llvm-svn: 195535
We were ignoring the ordered/onordered bits and also the signed/unsigned
bits of condition codes when lowering the DAG to MachineInstrs.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195514
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
llvm-svn: 195504
Utilizing the 8 and 16 bit comparison instructions, even when an input can
be folded into the comparison instruction itself, is typically not worth it.
There are too many partial register stalls as a result, leading to significant
slowdowns. By always performing comparisons on at least 32-bit
registers, performance of the calculation chain leading to the
comparison improves. Continue to use the smaller comparisons when
minimizing size, as that allows better folding of loads into the
comparison instructions.
rdar://15386341
llvm-svn: 195496
If the beginning of the loop was also the entry block
of the function, branches were inserted to the entry block
which isn't allowed. If this occurs, create a new dummy
function entry block that branches to the start of the loop.
llvm-svn: 195493
Improvements over r195317:
- Set/restore EnableFastISel flag instead of just running FastISel within
SelectAllBasicBlocks; the flag is checked in various places, and
FastISel won't run properly if those places don't do the right thing.
- Test looks for normal ISel versus FastISel behavior, and not
something more subtle that doesn't work everywhere.
Based on work by Andrea Di Biagio.
llvm-svn: 195491
The fix is simply to use CurI instead of I when handling aliases to
avoid accessing a invalid iterator.
original message:
Convert linkonce* to weak* instead of strong.
Also refactor the logic into a helper function. This is an important improve
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
llvm-svn: 195477
- When simplifying the mask generation for BLEND, check whether that mask is
also consumed by other non-BLEND insns. If true, skip that simplification.
llvm-svn: 195476
I've no idea why I decided to handle TMxx differently from all the other
high/low logic operations, but it was a stupid thing to do. The high
registers aren't available as separate 32-bit registers on z10,
so subreg_h32 can't be used on a GR64 there.
I've normally been testing with z196 and with -O3 and so hadn't noticed
this until now.
llvm-svn: 195473
Also refactor the logic into a helper function. This is an important improvement
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
llvm-svn: 195470
The legalizer can now do this type of expansion for more
type combinations without loading and storing to and
from the stack.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195398
section use the form DW_FORM_data4 whilst in Dwarf 4 and later they
use the form DW_FORM_sec_offset.
This patch updates the places where such attributes are generated to
use the appropriate form depending on the Dwarf version. The DIE entries
affected have the following tags:
DW_AT_stmt_list, DW_AT_ranges, DW_AT_location, DW_AT_GNU_pubnames,
DW_AT_GNU_pubtypes, DW_AT_GNU_addr_base, DW_AT_GNU_ranges_base
It also adds a hidden command line option "--dwarf-version=<uint>"
to llc which allows the version of Dwarf to be generated to override
what is specified in the metadata; this makes it possible to update
existing tests to check the debugging information generated for both
Dwarf 4 (the default) and Dwarf 3 using the same metadata.
Patch (slightly modified) by Keith Walker!
llvm-svn: 195391
AMD's processors family K7, K8, K10, K12, K15 and K16 are known to have SHLD/SHRD instructions with very poor latency. Optimization guides for these processors recommend using an alternative sequence of instructions. For these AMD's processors, I disabled folding (or (x << c) | (y >> (64 - c))) when we are not optimizing for size.
It might be beneficial to disable this folding for some of the Intel's processors. However, since I couldn't find specific recommendations regarding using SHLD/SHRD instructions on Intel's processors, I haven't disabled this peephole for Intel.
llvm-svn: 195383
The new command line flags are -dfsan-ignore-pointer-label-on-store and -dfsan-ignore-pointer-label-on-load. Their default value matches the current labelling scheme.
Additionally, the function __dfsan_union_load is marked as readonly.
Patch by Lorenzo Martignoni!
Differential Revision: http://llvm-reviews.chandlerc.com/D2187
llvm-svn: 195382
Mask == ~InvMask asserts if the width of Mask and InvMask differ.
The combine isn't valid (with two exceptions, see below) if the widths differ
so test for this before testing Mask == ~InvMask.
In the specific cases of Mask=~0 and InvMask=0, as well as Mask=0 and
InvMask=~0, the combine is still valid. However, there are more appropriate
combines that could be used in these cases such as folding x & 0 to 0, or
x & ~0 to x.
llvm-svn: 195364
Summary:
LegalizeSetCCCondCode can now legalize SETEQ and SETNE by returning the inverse
condition and requesting that the caller invert the result of the condition.
The caller of LegalizeSetCCCondCode must handle the inverted CC, and they do
so as follows:
SETCC, BR_CC:
Invert the result of the SETCC with SelectionDAG::getNOT()
SELECT_CC:
Swap the true/false operands.
This is necessary for MSA which lacks an integer SETNE instruction.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2229
llvm-svn: 195355
It broke, at least, i686 target. It is reproducible with "llc -mtriple=i686-unknown".
FYI, it didn't appear to add either "-O0" or "-fast-isel".
llvm-svn: 195339
clang optimizes tail calls, as in this example:
int foo(void);
int bar(void) {
return foo();
}
where the call is transformed to:
calll .L0$pb
.L0$pb:
popl %eax
.Ltmp0:
addl $_GLOBAL_OFFSET_TABLE_+(.Ltmp0-.L0$pb), %eax
movl foo@GOT(%eax), %eax
popl %ebp
jmpl *%eax # TAILCALL
However, the GOT references must all be resolved at dlopen() time, and so this
approach cannot be used with lazy dynamic linking (e.g. using RTLD_LAZY), which
usually populates the PLT with stubs that perform the actual resolving.
This patch changes X86TargetLowering::LowerCall() to skip tail call
optimization, if the called function is a global or external symbol.
Patch by Dimitry Andric!
PR15086
llvm-svn: 195318
The instruction definitions incorrectly specified that popcntd and popcntw have
record forms; they do not. This mistake was causing invalid code generation.
llvm-svn: 195272
We now only allow breaking source order if the exit block frequency is
significantly higher than the other exit block. The actual bias is
currently under a flag so the best cut-off can be found; the flag
defaults to the old behavior. The idea is to get some benchmark coverage
over different values for the flag and pick the best one.
When we require the new frequency to be at least 20% higher than the old
frequency I see a 5% speedup on zlib's deflate when compressing a random
file on x86_64/westmere. Hal reported a small speedup on Fhourstones on
a BG/Q and no regressions in the test suite.
The test case is the full long_match function from zlib's deflate. I was
reluctant to add it for previous tweaks to branch probabilities because
it's large and potentially fragile, but changed my mind since it's an
important use case and more likely to break with all the current work
going into the PGO infrastructure.
Differential Revision: http://llvm-reviews.chandlerc.com/D2202
llvm-svn: 195265
Summary:
Directives are being ignored, when they occur between a partial-word false
match and any match on another prefix.
For example, with FOO and BAR prefixes:
_FOO
FOO: foo
BAR: bar
FileCheck incorrectly matches:
fog
bar
This happens because FOO falsely matched as a partial word at '_FOO' and was
ignored while BAR matched at 'BAR:'. The match of BAR is incorrectly returned
as the 'first match' causing the FOO directive to be discarded.
Fixed this the same way as r194565 (D2166) did for a similar test case.
The partial-word false match should be counted as a match for the purposes of
finding the first match of a prefix, but should be returned as a false match
using CheckTy::CheckNone so that it isn't treated as a directive.
Fixes PR17995
Reviewers: samsonov, arsenm
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2228
llvm-svn: 195248
Instead of permanently outputting "MVLL" as the file checksum, clang
will create gcno and gcda checksums by hashing the destination block
numbers of every arc. This allows for llvm-cov to check if the two gcov
files are synchronized.
Regenerated the test files so they contain the checksum. Also added
negative test to ensure error when the checksums don't match.
llvm-svn: 195191
Masking operations (where only some number of the low bits are being kept) are
selected to rldicl(x, 0, mb). If x is a logical right shift (which would become
rldicl(y, 64-n, n)), we might be able to fold the two instructions together:
rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) for n <= mb
The right shift is really a left rotate followed by a mask, and if the explicit
mask is a more-restrictive sub-mask of the mask implied by the shift, only one
rldicl is needed.
llvm-svn: 195185
Emit DW_TAG_type_units into the debug_info section using compile unit
headers. This is bogus/unusable by debuggers, but testable and provides
more isolated review.
Subsequent patches will include support for type unit headers and
emission into the debug_types section, as well as comdat grouping the
types based on their hash. Also the CompileUnit type will be renamed
'Unit' and relevant portions pulled out into respective CompileUnit and
TypeUnit types.
llvm-svn: 195166
We are slicing an array of Value pointers and process those slices in a loop.
The problem is that we might invalidate a later slice by vectorizing a former
slice.
Use a WeakVH to track the pointer. If the pointer is deleted or RAUW'ed we can
tell.
The test case will only fail when running with libgmalloc.
radar://15498655
llvm-svn: 195162
Instead of processing relocation for branch to stubs right away, emit a
modified relocation and add it to queue to be resolved later when final load
address is known.
This resolves seven MIPS MCJIT issues that were caused by missing relocation
fixups at the end.
llvm-svn: 195157
The object files we support use null terminated strings, so there is no way to
support these.
This patch adds an assert to catch bad API use and an error check in the .ll
parser.
llvm-svn: 195155
This is the first step to fix pr17918.
It extends the .section directive a bit, inspired by what the ELF one looks
like. The problem with using linkonce is that given
.section foo
.linkonce....
.section foo
.linkonce
we would already have switched sections when getting to .linkonce. The cleanest
solution seems to be to add the comdat information in the .section itself.
llvm-svn: 195148
Hard float for mips16 means essentially to compile as soft float but to
use a runtime library for soft float that is written with native mips32
floating point instructions (those runtime routines run in mips32 hard
float mode).
The patch reviewed by Reed Kotler.
llvm-svn: 195123
order of slices of the alloca which have exactly the same size and other
properties. This was found by a perniciously unstable sort
implementation used to flush out buggy uses of the algorithm.
The fundamental idea is that findCommonType should return the best
common type it can find across all of the slices in the range. There
were two bugs here previously:
1) We would accept an integer type smaller than a byte-width multiple,
and if there were different bit-width integer types, we would accept
the first one. This caused an actual failure in the testcase updated
here when the sort order changed.
2) If we found a bad combination of types or a non-load, non-store use
before an integer typed load or store we would bail, but if we found
the integere typed load or store, we would use it. The correct
behavior is to always use an integer typed operation which covers the
partition if one exists.
While a clever debugging sort algorithm found problem #1 in our existing
test cases, I have no useful test case ideas for #2. I spotted in by
inspection when looking at this code.
llvm-svn: 195118
A column limit in the test folder can lead to trouble as the RUN, CHECK,
etc. comments can potentially be broken over multiple lines changing
their meaning. Without column limit, clang-format will simply keep the
test author's line breaks.
llvm-svn: 195100