Commit Graph

77 Commits

Author SHA1 Message Date
Adrian Prantl 5f8f34e459 Remove \brief commands from doxygen comments.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.

Patch produced by

  for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done

Differential Revision: https://reviews.llvm.org/D46290

llvm-svn: 331272
2018-05-01 15:54:18 +00:00
Simon Pilgrim 23c2182c2b Support generic expansion of ordered vector reduction (PR36732)
Without the fast math flags, the llvm.experimental.vector.reduce.fadd/fmul intrinsic expansions must be expanded in order.

This patch scalarizes the reduction, applying the accumulator at the start of the sequence: ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[NumElts-1]

Differential Revision: https://reviews.llvm.org/D45366

llvm-svn: 329585
2018-04-09 15:44:20 +00:00
Simon Pilgrim a74f4ae404 Strip trailing whitespace. NFCI.
llvm-svn: 329421
2018-04-06 17:01:54 +00:00
Philip Reames 23aed5ef6f [MustExecute] Move isGuaranteedToExecute and related rourtines to Analysis
Next step is to actually merge the implementations and get both implementations tested through the new printer.

llvm-svn: 328055
2018-03-20 22:45:23 +00:00
Philip Reames 8a106272e8 [LICM/mustexec] Extend first iteration must execute logic to fcmps
This builds on the work from https://reviews.llvm.org/D44287. It turned out supporting fcmp was much easier than I realized, so let's do that now.

As an aside, our -O3 handling of a floating point IVs leaves a lot to be desired. We do convert the float IV to an integer IV, but do so late enough that many other optimizations are missed (e.g. we don't vectorize).

Differential Revision: https://reviews.llvm.org/D44542

llvm-svn: 327722
2018-03-16 16:33:49 +00:00
Philip Reames a21d5f1e18 [LICM] Ignore exits provably not taken on first iteration when computing must execute
It is common to have conditional exits within a loop which are known not to be taken on some iterations, but not necessarily all. This patches extends our reasoning around guaranteed to execute (used when establishing whether it's safe to dereference a location from the preheader) to handle the case where an exit is known not to be taken on the first iteration and the instruction of interest *is* known to be taken on the first iteration.

This case comes up in two major ways:
* If we have a range check which we've been unable to eliminate, we frequently know that it doesn't fail on the first iteration.
* Pass ordering. We may have a check which will be eliminated through some sequence of other passes, but depending on the exact pass sequence we might never actually do so or we might miss other optimizations from passes run before the check is finally eliminated.

The initial version (here) is implemented via InstSimplify. At the moment, it catches a few cases, but misses a lot too. I added test cases for missing cases in InstSimplify which I'll follow up on separately. Longer term, we should probably wire SCEV through to here to get much smarter loop aware simplification of the first iteration predicate.

Differential Revision: https://reviews.llvm.org/D44287

llvm-svn: 327664
2018-03-15 21:04:28 +00:00
Philip Reames fbffd126b8 [NFC] Factor out a helper function for checking if a block has a potential early implicit exit.
llvm-svn: 327065
2018-03-08 21:25:30 +00:00
David Green 0d5f9651f2 Move llvm::computeLoopSafetyInfo from LICM.cpp to LoopUtils.cpp. NFC
Move computeLoopSafetyInfo, defined in Transforms/Utils/LoopUtils.h,
into the corresponding LoopUtils.cpp, as opposed to LICM where it resides
at the moment. This will allow other functions from Transforms/Utils
to reference it.

llvm-svn: 325151
2018-02-14 18:34:53 +00:00
Chad Rosier a097bc69df [LV] Use Demanded Bits and ValueTracking for reduction type-shrinking
The type-shrinking logic in reduction detection, although narrow in scope, is
also rather ad-hoc, which has led to bugs (e.g., PR35734). This patch modifies
the approach to rely on the demanded bits and value tracking analyses, if
available. We currently perform type-shrinking separately for reductions and
other instructions in the loop. Long-term, we should probably think about
computing minimal bit widths in a more complete way for the loops we want to
vectorize.

PR35734
Differential Revision: https://reviews.llvm.org/D42309

llvm-svn: 324195
2018-02-04 15:42:24 +00:00
Hiroshi Inoue d24ddcd6c4 [NFC] fix trivial typos in comments
"the the" -> "the"

llvm-svn: 322934
2018-01-19 10:55:29 +00:00
Serguei Katkov a757d65cec [LoopDeletion] Handle users in unreachable block
This is a fix for PR35884.

When we want to delete dead loop we must clean uses in unreachable blocks
otherwise we'll get an assert during deletion of instructions from the loop.

Reviewers: anna, davide
Reviewed By: anna
Subscribers: llvm-commits, lebedev.ri
Differential Revision: https://reviews.llvm.org/D41943

llvm-svn: 322357
2018-01-12 07:24:43 +00:00
Benjamin Kramer c7fc81e659 Use phi ranges to simplify code. No functionality change intended.
llvm-svn: 321585
2017-12-30 15:27:33 +00:00
Benjamin Kramer 802e6255b2 Make helpers static. No functionality change.
llvm-svn: 321425
2017-12-24 12:46:22 +00:00
Dorit Nuzman 4750c785b3 [LV] Support efficient vectorization of an induction with redundant casts
D30041 extended SCEVPredicateRewriter to improve handling of Phi nodes whose
update chain involves casts; PSCEV can now build an AddRecurrence for some
forms of such phi nodes, under the proper runtime overflow test. This means
that we can identify such phi nodes as an induction, and the loop-vectorizer
can now vectorize such inductions, however inefficiently. The vectorizer
doesn't know that it can ignore the casts, and so it vectorizes them.

This patch records the casts in the InductionDescriptor, so that they could
be marked to be ignored for cost calculation (we use VecValuesToIgnore for
that) and ignored for vectorization/widening/scalarization (i.e. treated as
TriviallyDead).

In addition to marking all these casts to be ignored, we also need to make
sure that each cast is mapped to the right vector value in the vector loop body
(be it a widened, vectorized, or scalarized induction). So whenever an
induction phi is mapped to a vector value (during vectorization/widening/
scalarization), we also map the respective cast instruction (if exists) to that
vector value. (If the phi-update sequence of an induction involves more than one
cast, then the above mapping to vector value is relevant only for the last cast
of the sequence as we allow only the "last cast" to be used outside the
induction update chain itself).

This is the last step in addressing PR30654.

llvm-svn: 320672
2017-12-14 07:56:31 +00:00
Sanjay Patel 3e069f5724 [LoopUtils] simplify createTargetReduction(); NFCI
llvm-svn: 319946
2017-12-06 19:37:00 +00:00
Sanjay Patel 1ea7b6f7a1 [LoopUtils] fix variable name to match FMF vocabulary; NFC
llvm-svn: 319928
2017-12-06 19:11:23 +00:00
Sanjay Patel 629c411538 [IR] redefine 'UnsafeAlgebra' / 'reassoc' fast-math-flags and add 'trans' fast-math-flag
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html

...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.

As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the 
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic 
reassociation - 'AllowReassoc'.

We're also adding a bit to allow approximations for library functions called 'ApproxFunc' 
(this was initially proposed as 'libm' or similar).

...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did 
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits), 
but that's apparently already used for other purposes. Also, I don't think we can just 
add a field to FPMathOperator because Operator is not intended to be instantiated. 
We'll defer movement of FMF to another day.

We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.

Finally, this change is binary incompatible with existing IR as seen in the 
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile 
them. For example, if nsw is ever replaced with something else, dropping it would be 
a valid way to upgrade the IR." 
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR 
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will 
fail to optimize some previously 'fast' code because it's no longer recognized as 
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.

Note: an inter-dependent clang commit to use the new API name should closely follow 
commit.

Differential Revision: https://reviews.llvm.org/D39304

llvm-svn: 317488
2017-11-06 16:27:15 +00:00
Hans Wennborg 899809d531 Fix a -Wparentheses warning. NFC.
llvm-svn: 314936
2017-10-04 21:14:07 +00:00
Marcello Maggioni df3e71e037 [LoopDeletion] Move deleteDeadLoop to to LoopUtils. NFC
llvm-svn: 314934
2017-10-04 20:42:46 +00:00
Alina Sbirlea 7ed5856a32 Refactor collectChildrenInLoop to LoopUtils [NFC]
Summary: Move to LoopUtils method that collects all children of a node inside a loop.

Reviewers: majnemer, sanjoy

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D37870

llvm-svn: 313322
2017-09-15 00:04:16 +00:00
Ayal Zaks 25e2800e20 [LV] Minor savings to Sink casts to unravel first order recurrence
Two minor savings: avoid copying the SinkAfter map and avoid moving a cast if it
is not needed.

Differential Revision: https://reviews.llvm.org/D36408

llvm-svn: 310910
2017-08-15 08:32:59 +00:00
Dinar Temirbulatov a61f4b8957 [LoopUtils] Add an extra parameter OpValue to propagateIRFlags function,
If OpValue is non-null, we only consider operations similar to OpValue
when intersecting.

Differential Revision: https://reviews.llvm.org/D35292

llvm-svn: 308428
2017-07-19 10:02:07 +00:00
Ayal Zaks 2ff59d4350 [LV] Sink casts to unravel first order recurrence
Check if a single cast is preventing handling a first-order-recurrence Phi,
because the scheduling constraints it imposes on the first-order-recurrence
shuffle are infeasible; but they can be made feasible by moving the cast
downwards. Record such casts and move them when vectorizing the loop.

Differential Revision: https://reviews.llvm.org/D33058

llvm-svn: 306884
2017-06-30 21:05:06 +00:00
Chandler Carruth 4a000883c7 [LoopSimplify] Re-instate r306081 with a bug fix w.r.t. indirectbr.
This was reverted in r306252, but I already had the bug fixed and was
just trying to form a test case.

The original commit factored the logic for forming dedicated exits
inside of LoopSimplify into a helper that could be used elsewhere and
with an approach that required fewer intermediate data structures. See
that commit for full details including the change to the statistic, etc.

The code looked fine to me and my reviewers, but in fact didn't handle
indirectbr correctly -- it left the 'InLoopPredecessors' vector dirty.

If you have code that looks *just* right, you can end up leaking these
predecessors into a subsequent rewrite, and crash deep down when trying
to update PHI nodes for predecessors that don't exist.

I've added an assert that makes the bug much more obvious, and then
changed the code to reliably clear the vector so we don't get this bug
again in some other form as the code changes.

I've also added a test case that *does* manage to catch this while also
giving some nice positive coverage in the face of indirectbr.

The real code that found this came out of what I think is CPython's
interpreter loop, but any code with really "creative" interpreter loops
mixing indirectbr and other exit paths could manage to tickle the bug.
I was hard to reduce the original test case because in addition to
having a particular pattern of IR, the whole thing depends on the order
of the predecessors which is in turn depends on use list order. The test
case added here was designed so that in multiple different predecessor
orderings it should always end up going down the same path and tripping
the same bug. I hope. At least, it tripped it for me without
manipulating the use list order which is better than anything bugpoint
could do...

llvm-svn: 306257
2017-06-25 22:45:31 +00:00
Daniel Jasper 4c6cd4ccb7 Revert "[LoopSimplify] Factor the logic to form dedicated exits into a utility."
This leads to a segfault. Chandler already has a test case and should be
able to recommit with a fix soon.

llvm-svn: 306252
2017-06-25 17:58:25 +00:00
Craig Topper 72ee6945af [Analysis][Transforms] Use commutable matchers instead of m_CombineOr in a few places. NFC
llvm-svn: 306204
2017-06-24 06:24:01 +00:00
Chandler Carruth 4ab0f4910a [LoopSimplify] Factor the logic to form dedicated exits into a utility.
I want to use the same logic as LoopSimplify to form dedicated exits in
another pass (SimpleLoopUnswitch) so I wanted to factor it out here.

I also noticed that there is a pretty significantly more efficient way
to implement this than the way the code in LoopSimplify worked. We don't
need to actually retain the set of unique exit blocks, we can just
rewrite them as we find them and use only a set to deduplicate.

This did require changing one part of LoopSimplify to not re-use the
unique set of exits, but it only used it to check that there was
a single unique exit. That part of the code is about to walk the exiting
blocks anyways, so it seemed better to rewrite it to use those exiting
blocks to compute this property on-demand.

I also had to ditch a statistic, but it doesn't seem terribly valuable.

Differential Revision: https://reviews.llvm.org/D34049

llvm-svn: 306081
2017-06-23 04:03:04 +00:00
Chandler Carruth 6bda14b313 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00
Amara Emerson 836b0f48c1 Add a late IR expansion pass for the experimental reduction intrinsics.
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.

Differential Revision: https://reviews.llvm.org/D32245

llvm-svn: 302631
2017-05-10 09:42:49 +00:00
Amara Emerson cf9daa33a7 Introduce experimental generic intrinsics for horizontal vector reductions.
- This change allows targets to opt-in to using them instead of the log2
  shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
  factored out into LoopUtils, and now have a unified interface for generating
  reductions regardless of the preference of the target. LoopUtils now uses TTI
  to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.

Differential Revision: https://reviews.llvm.org/D30086

llvm-svn: 302514
2017-05-09 10:43:25 +00:00
Evgeniy Stepanov 58ccc0949a Revert "Compute safety information in a much finer granularity."
Use-after-free in llvm::isGuaranteedToExecute.

llvm-svn: 301214
2017-04-24 18:25:07 +00:00
Xin Tong a266923d57 Compute safety information in a much finer granularity.
Summary:
Instead of keeping a variable indicating whether there are early exits
in the loop.  We keep all the early exits. This improves LICM's ability to
move instructions out of the loop based on is-guaranteed-to-execute.

I am going to update compilation time as well soon.

Reviewers: hfinkel, sanjoy, efriedma, mkuper

Reviewed By: hfinkel

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D32433

llvm-svn: 301196
2017-04-24 17:12:22 +00:00
Anna Thomas dcdb325fee [LV] Fix the vector code generation for first order recurrence
Summary:
In first order recurrences where phi's are used outside the loop,
we should generate an additional vector.extract of the second last element from
the vectorized phi update.
This is because we require the phi itself (which is the value at the second last
iteration of the vector loop) and not the phi's update within the loop.
Also fix the code gen when we just unroll, but don't vectorize.
Fixes PR32396.

Reviewers: mssimpso, mkuper, anemet

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D31979

llvm-svn: 300238
2017-04-13 18:59:25 +00:00
Anna Thomas 00dc1b74b7 [LV] Avoid vectorizing first order recurrence when phi uses are outside loop
In the vectorization of first order recurrence, we vectorize such
that the last element in the vector will be the one extracted to pass into the
scalar remainder loop. However, this is not true when there is a phi (other
than the primary induction variable) is used outside the loop.
In such a case, we need the value from the second last iteration (i.e.
the phi value), not the last iteration (which would be the phi update).
I've added a test case for this. Also see PR32396.

A follow up patch would generate the correct code gen for such cases,
and turn this vectorization on.

Differential Revision: https://reviews.llvm.org/D31910

Reviewers: mssimpso
llvm-svn: 299985
2017-04-11 21:02:00 +00:00
Michael Kuperstein 0de990da16 Fix up a comment. NFC.
llvm-svn: 292425
2017-01-18 19:05:48 +00:00
Michael Kuperstein 7cefb409b0 [LV] Allow reductions that have several uses outside the loop
We currently check whether a reduction has a single outside user. We don't
really need to require that - we just need to make sure a single value is
used externally. The number of external users of that value shouldn't actually
matter.

Differential Revision: https://reviews.llvm.org/D28830

llvm-svn: 292424
2017-01-18 19:02:52 +00:00
Michael Kuperstein ee31cbe35f [LV] Don't panic when encountering the IV of an outer loop.
Bail out instead of asserting when we encounter this situation,
which can actually happen.

The reason the test uses the new PM is that the "bad" phi, incidentally, gets
cleaned up by LoopSimplify. But LICM can create this kind of phi and preserve
loop simplify form, so the cleanup has no chance to run.

This fixes PR31190.
We may want to solve this in a less conservative manner, since this phi is
actually uniform within the inner loop (or we may want LICM to output a cleaner
promotion to begin with).

Differential Revision: https://reviews.llvm.org/D28490

llvm-svn: 291589
2017-01-10 19:32:30 +00:00
Michael Kuperstein 997dac8709 Remove stale comment. NFC.
llvm-svn: 288572
2016-12-03 01:59:13 +00:00
Michael Kuperstein b151a641aa [LoopUnroll] Implement profile-based loop peeling
This implements PGO-driven loop peeling.

The basic idea is that when the average dynamic trip-count of a loop is known,
based on PGO, to be low, we can expect a performance win by peeling off the
first several iterations of that loop.
Unlike unrolling based on a known trip count, or a trip count multiple, this
doesn't save us the conditional check and branch on each iteration. However,
it does allow us to simplify the straight-line code we get (constant-folding,
etc.). This is important given that we know that we will usually only hit this
code, and not the actual loop.

This is currently disabled by default.

Differential Revision: https://reviews.llvm.org/D25963

llvm-svn: 288274
2016-11-30 21:13:57 +00:00
Dehao Chen 41d72a8632 Use profile info to adjust loop unroll threshold.
Summary:
For flat loop, even if it is hot, it is not a good idea to unroll in runtime, thus we set a lower partial unroll threshold.
For hot loop, we set a higher unroll threshold and allows expensive tripcount computation to allow more aggressive unrolling.

Reviewers: davidxl, mzolotukhin

Subscribers: sanjoy, mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D26527

llvm-svn: 287186
2016-11-17 01:17:02 +00:00
Igor Laevsky c3ccf5d77b [LCSSA] Perform LCSSA verification only for the current loop nest.
Now LPPassManager will run LCSSA verification only for the top-level loop
which was processed on the current iteration.

Differential Revision: https://reviews.llvm.org/D25873

llvm-svn: 285394
2016-10-28 12:57:20 +00:00
Adam Nemet 4f155b6e91 [LoopUnroll] Use OptimizationRemarkEmitter directly not via the analysis pass
We can't mark ORE (a function pass) preserved as required by the loop
passes because that is how we ensure that the required passes like
LazyBFI are all available any time ORE is used.  See the new comments in
the patch.

Instead we use it directly just like the inliner does in D22694.

As expected there is some additional overhead after removing the caching
provided by analysis passes.  The worst case, I measured was
LNT/CINT2006_ref/401.bzip2 which regresses by 12%.  As before, this only
affects -Rpass-with-hotness and not default compilation.

llvm-svn: 279829
2016-08-26 15:58:34 +00:00
David Majnemer 42531260b3 Use the range variant of find/find_if instead of unpacking begin/end
If the result of the find is only used to compare against end(), just
use is_contained instead.

No functionality change is intended.

llvm-svn: 278469
2016-08-12 03:55:06 +00:00
David Majnemer 0a16c22846 Use range algorithms instead of unpacking begin/end
No functionality change is intended.

llvm-svn: 278417
2016-08-11 21:15:00 +00:00
Adam Nemet 12937c361f [LoopUnroll] Include hotness of region in opt remark
LoopUnroll is a loop pass, so the analysis of OptimizationRemarkEmitter
is added to the common function analysis passes that loop passes
depend on.

The BFI and indirectly BPI used in this pass is computed lazily so no
overhead should be observed unless -pass-remarks-with-hotness is used.

This is how the patch affects the O3 pipeline:

         Dominator Tree Construction
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Rotate Loops
           Loop Invariant Code Motion
           Unswitch loops
         Simplify the CFG
         Dominator Tree Construction
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Combine redundant instructions
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Induction Variable Simplification
           Recognize loop idioms
           Delete dead loops
           Unroll loops
...

llvm-svn: 277203
2016-07-29 19:29:47 +00:00
Adam Nemet 2f2bd8caf4 [LoopUtils] Sort headers
llvm-svn: 276776
2016-07-26 17:52:02 +00:00
Elena Demikhovsky 376a18bd92 [Loop Vectorizer] Handling loops FP induction variables.
Allowed loop vectorization with secondary FP IVs. Like this:
float *A;
float x = init;
for (int i=0; i < N; ++i) {
  A[i] = x;
  x -= fp_inc;
}

The auto-vectorization is possible when the induction binary operator is "fast" or the function has "unsafe" attribute.

Differential Revision: https://reviews.llvm.org/D21330

llvm-svn: 276554
2016-07-24 07:24:54 +00:00
Eli Friedman f1da33e4d3 [LICM] Make isGuaranteedToExecute more accurate.
Summary:
Make isGuaranteedToExecute use the
isGuaranteedToTransferExecutionToSuccessor helper, and make that helper
a bit more accurate.

There's a potential performance impact here from assuming that arbitrary
calls might not return. This probably has little impact on loads and
stores to a pointer because most things alias analysis can reason about
are dereferenceable anyway. The other impacts, like less aggressive
hoisting of sdiv by a variable and less aggressive hoisting around
volatile memory operations, are unlikely to matter for real code.

This also impacts SCEV, which uses the same helper.  It's a minor
improvement there because we can tell that, for example, memcpy always
returns normally. Strictly speaking, it's also introducing
a bug, but it's not any worse than everywhere else we assume readonly
functions terminate.

Fixes http://llvm.org/PR27857.

Reviewers: hfinkel, reames, chandlerc, sanjoy

Subscribers: broune, llvm-commits

Differential Revision: http://reviews.llvm.org/D21167

llvm-svn: 272489
2016-06-11 21:48:25 +00:00
Evgeniy Stepanov 122f984a33 Move isGuaranteedToExecute out of LICM.
Also rename LICMSafetyInfo to LoopSafetyInfo.
Both will be used in LoopUnswitch in a separate change.

llvm-svn: 272420
2016-06-10 20:03:17 +00:00
Easwaran Raman e12c487b8c [PM] Port LCSSA to the new PM.
Differential Revision: http://reviews.llvm.org/D21090

llvm-svn: 272294
2016-06-09 19:44:46 +00:00