This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280700
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
* Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
* Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280686
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279650
This is a fix for PR28697.
An MDNode can indirectly refer to a GlobalValue, through a
ConstantAsMetadata. When the GlobalValue is deleted, the MDNode operand
is reset to `nullptr`. If the node is uniqued, this can lead to a
hard-to-detect cache invalidation in a Metadata map that's shared across
an LLVMContext.
Consider:
1. A map from Metadata* to `T` called RemappedMDs.
2. A node that references a global variable, `!{i1* @GV}`.
3. Insert `!{i1* @GV} -> SomeT` in the map.
4. Delete `@GV`, leaving behind `!{null} -> SomeT`.
Looking up the generic and uninteresting `!{null}` gives you `SomeT`,
which is likely related to `@GV`. Worse, `SomeT`'s lifetime may be tied
to the deleted `@GV`.
This occurs in practice in the shared ValueMap used since r266579 in the
IRMover. Other code that handles more than one Module (with different
lifetimes) in the same LLVMContext could hit it too.
The fix here is a partial revert of r225223: in the rare case that an
MDNode operand is a ConstantAsMetadata (i.e., wrapping a node from the
Value hierarchy), drop uniquing if it gets replaced with `nullptr`.
This changes step #4 above to leave behind `distinct !{null} -> SomeT`,
which can't be confused with the generic `!{null}`.
In theory, this can cause some churn in the LLVMContext's MDNode
uniquing map when Values are being deleted. However:
- The number of GlobalValues referenced from uniqued MDNodes is
expected to be quite small. E.g., the debug info metadata schema
only references GlobalValues from distinct nodes.
- Other Constants have the lifetime of the LLVMContext, whose teardown
is careful to drop references before deleting the constants.
As a result, I don't expect a compile time regression from this change.
llvm-svn: 277625
Summary:
This represents the adjustment applied to the implicit 'this' parameter
in the prologue of a virtual method in the MS C++ ABI. The adjustment is
always zero unless multiple inheritance is involved.
This increases the size of DISubprogram by 8 bytes, unfortunately. The
adjustment really is a signed 32-bit integer. If this size increase is
too much, we could probably win it back by splitting out a subclass with
info specific to virtual methods (virtuality, vindex, thisadjustment,
containingType).
Reviewers: aprantl, dexonsmith
Subscribers: aaboud, amccarth, llvm-commits
Differential Revision: http://reviews.llvm.org/D21614
llvm-svn: 274325
This change is motivated by an upcoming change to the metadata representation
used for CFI. The indirect function call checker needs type information for
external function declarations in order to correctly generate jump table
entries for such declarations. We currently associate such type information
with declarations using a global metadata node, but I plan [1] to move all
such metadata to global object attachments.
In bitcode, metadata attachments for function declarations appear in the
global metadata block. This seems reasonable to me because I expect metadata
attachments on declarations to be uncommon. In the long term I'd also expect
this to be the case for CFI, because we'd want to use some specialized bitcode
format for this metadata that could be read as part of the ThinLTO thin-link
phase, which would mean that it would not appear in the global metadata block.
To solve the lazy loaded metadata issue I was seeing with D20147, I use the
same bitcode representation for metadata attachments for global variables as I
do for function declarations. Since there's a use case for metadata attachments
in the global metadata block, we might as well use that representation for
global variables as well, at least until we have a mechanism for lazy loading
global variables.
In the assembly format, the metadata attachments appear after the "declare"
keyword in order to avoid a parsing ambiguity.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21052
llvm-svn: 273336
Summary:
Now DISubroutineType has a 'cc' field which should be a DW_CC_ enum. If
it is present and non-zero, the backend will emit it as a
DW_AT_calling_convention attribute. On the CodeView side, we translate
it to the appropriate enum for the LF_PROCEDURE record.
I added a new LLVM vendor specific enum to the list of DWARF calling
conventions. DWARF does not appear to attempt to standardize these, so I
assume it's OK to do this until we coordinate with GCC on how to emit
vectorcall convention functions.
Reviewers: dexonsmith, majnemer, aaboud, amccarth
Subscribers: mehdi_amini, llvm-commits
Differential Revision: http://reviews.llvm.org/D21114
llvm-svn: 272197
Arrange to call verify(Function &) on each function, followed by
verify(Module &), whether the verifier is being used from the pass or
from verifyModule(). As a side effect, this fixes an issue that caused
us not to call verify(Function &) on unmaterialized functions from
verifyModule().
Differential Revision: http://reviews.llvm.org/D21042
llvm-svn: 271956
This will be necessary to allow the global merge pass to attach
multiple debug info metadata nodes to global variables once we reverse
the edge from DIGlobalVariable to GlobalVariable.
Differential Revision: http://reviews.llvm.org/D20414
llvm-svn: 271358
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
Each reference to an unresolved MDNode is expensive, since the RAUW
support in MDNode uses a separate allocation and side map. Since
a distinct MDNode doesn't require its operands on creation (unlike
uniuqed nodes, there's no need to check for structural equivalence),
use nullptr for any of its unresolved operands. Besides reducing the
burden on MDNode maps, this can avoid allocating temporary MDNodes in
the first place.
We need some way to track operands. Invent DistinctMDOperandPlaceholder
for this purpose, which is a Metadata subclass that holds an ID and
points at its single user. DistinctMDOperandPlaceholder::replaceUseWith
is just like RAUW, but its name highlights that there is only ever
exactly one use.
There is no support for moving (or, obviously, copying) these. Move
support would be possible but expensive; leaving it unimplemented
prevents user error. In the BitcodeReader I originally considered
allocating on a BumpPtrAllocator and keeping a vector of pointers to
them, and then I realized that std::deque implements exactly this.
A couple of obvious follow-ups:
- Change ValueEnumerator to emit distinct nodes first to take more
advantage of this optimization. (How convenient... I think I might
have a couple of patches for this.)
- Change DIBuilder and its consumers (like CGDebugInfo in clang) to
use something like this when constructing debug info in the first
place.
llvm-svn: 267270
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
A DISubprogram on x86_64 was 48 bytes. During an LTO build we
end up allocating *a lot* of these (see Duncan's numbers on
llvm-dev and/or my numbers in the review link).
This change reduces the size to 40 bytes, with a nice effect
on peak memory usage when LTO'ing clang.
There are more classes in the hierarchy which can be compacted
so more patches will come. DISubprogram was the biggest offender
in my profiling, anyway.
Differential Revision: http://reviews.llvm.org/D18918
llvm-svn: 266241
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
Since we have moved to a model where functions are imported in bulk from
each source module after making summary-based importing decisions, there
is no longer a need to link metadata as a postpass, and all users have
been removed.
This essentially reverts r255909 and follow-on fixes.
llvm-svn: 264763
This adds a unittest for the support added in r256648 to add
a flag that can be used to prevent RAUW on temporary metadata
used as a map key.
llvm-svn: 256938
Introduced DIMacro and DIMacroFile debug info metadata in the LLVM IR to support macros.
Differential Revision: http://reviews.llvm.org/D14687
llvm-svn: 255245
This is needed to support linking of module-level metadata as a
postpass after function importing, where we will be leaving temporary
metadata on imported instructions until the postpass metadata import.
Also added unittest. Split from D14838.
llvm-svn: 254914
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
This fixes PR24621 and matches what we do for `DILocation`. Although
the limit seems somewhat artificial, there are places in the backend
that also assume 16-bit columns, so we may as well just be consistent
about the limits.
llvm-svn: 246349
Add `Function::setSubprogram()` and `Function::getSubprogram()`,
convenience methods to forward to `setMetadata()` and `getMetadata()`,
respectively, and deal in `DISubprogram` instead of `MDNode`.
Also add a verifier check to enforce that `!dbg` attachments are always
subprograms.
Originally (when I had the llvm-dev discussion back in April) I thought
I'd store a pointer directly on `llvm::Function` for these attachments
-- we frequently have debug info, and that's much cheaper than using map
in the context if there are no other function-level attachments -- but
for now I'm just using the generic infrastructure. Let's add the extra
complexity only if this shows up in a profile.
llvm-svn: 246339
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
It is meant to be used to record modules @imported by the current
compile unit, so a debugger an import the same modules to replicate this
environment before dropping into the expression evaluator.
DIModule is a sibling to DINamespace and behaves quite similarly.
In addition to the name of the module it also records the module
configuration details that are necessary to uniquely identify the module.
This includes the configuration macros (e.g., -DNDEBUG), the include path
where the module.map file is to be found, and the isysroot.
The idea is that the backend will turn this into a DW_TAG_module.
http://reviews.llvm.org/D9614
rdar://problem/20965932
llvm-svn: 241017
Allow callers of `Value::print()` and `Metadata::print()` to pass in a
`ModuleSlotTracker`. This allows them to pay only once for calculating
module-level slots (such as Metadata).
This is related to PR23865, where there was a huge cost for
`MachineFunction::print()`. Although I don't have a *particular* user
in mind for this new code, I have hit big slowdowns before when running
`opt -debug`, and I think this will be useful. Going forward, if
someone hits a big slowdown with `print()` statements, they can create a
`ModuleSlotTracker` and send it through. Similarly, adding support to
`Value::dump()` and `Metadata::dump()` should be trivial.
I added unit tests to be sure the `print()` functions actually behave
the same way with and without the slot tracker.
llvm-svn: 240867
so DWARF skeleton CUs can be expression in IR. A skeleton CU is a
(typically empty) DW_TAG_compile_unit that has a DW_AT_(GNU)_dwo_name and
a DW_AT_(GNU)_dwo_id attribute. It is used to refer to external debug info.
This is a prerequisite for clang module debugging as discussed in
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-November/040076.html.
In order to refer to external types stored in split DWARF (dwo) objects,
such as clang modules, we need to emit skeleton CUs, which identify the
dwarf object (i.e., the clang module) by filename (the SplitDebugFilename)
and a hash value, the dwo_id.
This patch only contains the IR changes. The idea is that a CUs with a
non-zero dwo_id field will be emitted together with a DW_AT_GNU_dwo_name
and DW_AT_GNU_dwo_id attribute.
http://reviews.llvm.org/D9488
rdar://problem/20091852
llvm-svn: 237949
Summary:
This adds three Function methods to handle function entry counts:
setEntryCount() and getEntryCount().
Entry counts are stored under the MD_prof metadata node with the name
"function_entry_count". They are unsigned 64 bit values set by profilers
(instrumentation and sample profiler changes coming up).
Added documentation for new profile metadata and tests.
Reviewers: dexonsmith, bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9628
llvm-svn: 237260
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Support up to 2^16 arguments to a function. If we do hit the limit,
assert out rather than restarting at 0 as we've done historically.
This fixes PR23332. A clang test will follow.
llvm-svn: 235955
Add a verifier check that only functions with bodies have metadata
attachments. This should help catch bugs in frontends and
transformation passes. Part of PR23340.
llvm-svn: 235784
Add IR support for `Metadata` attachments. Assembly and bitcode support
will follow shortly, but for now we just have unit tests. This is part
of PR23340.
llvm-svn: 235783
PR23080 is almost finished. With this commit, there's no consequential
API in `DIDescriptor` and its subclasses. What's left?
- Default-constructed to `nullptr`.
- Handy `const_cast<>` (constructed from `const`, but accessors are
non-`const`).
I think the safe way to catch those is to delete the classes and fix
compile errors. That'll be my next step, after I delete the `DITypeRef`
(etc.) wrapper around `MDTypeRef`.
llvm-svn: 235069
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
Change `MDSubprogram::getFunction()` and
`MDGlobalVariable::getConstant()` to return a `Constant`. Previously,
both returned `ConstantAsMetadata`.
llvm-svn: 234699
Use `MDTypeRef` (etc.) in the new debug info hierarchy rather than raw
`Metadata *` pointers.
I rolled in a change to `DIBuilder` that looks unrelated: take `DIType`
instead of `DITypeRef` as type arguments when creating variables.
However, this was the simplest way to use `MDTypeRef` within the
functions, and didn't require any cleanups from callers in clang (since
they were all passing in `DIType`s anyway, relying on their implicit
conversions to `DITypeRef`).
llvm-svn: 234197
replaceWithUniquedUnresolved
replaceWithUniquedUnresolvedChangedOperand
=>
replaceWithUniquedResolvingOperand
replaceWithUniquedChangingOperand
I find the new names less confusing; they're also more accurate. Sorry
for the churn.
llvm-svn: 233759