ld and sd when assembled for the O32 ABI expand to a pair of 32 bit word loads
or stores using the specified source or destination register and the next
register.
This patch does not add support for the cases where the offset is greater than
a 16 bit signed immediate as that would lead to a wrong/misleading error
message as the assembler would report "instruction requires a CPU feature
not currently enabled" for ld & sd for MIPS64 when their offset is not a signed
16 bit number.
This fixes PR/29159.
Thanks to Sean Bruno for reporting this issue!
Reviewers: vkalintiris, seanbruno, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D24556
llvm-svn: 284481
Committing on behalf of Coby Tayree: After check-all and LGTM
Desc:
AVX512 allows dest operand to be followed by an op-mask register specifier ('{k<num>}', which in turn may be followed by a merging/zeroing specifier ('{z}')
Currently, the following forms are allowed:
{k<num>}
{k<num>}{z}
This patch allows the following forms:
{z}{k<num>}
and ignores the next form:
{z}
Justification would be quite simple - GCC
Differential Revision: http://reviews.llvm.org/D25013
llvm-svn: 284479
Summary:
Instead of instantiating the MipsFastISel class and checking if the
target is supported in the overriden methods, we should perform that
check before creating the class. This allows us to enable FastISel *only*
for targets that truly support it, ie. MIPS32 to MIPS32R5.
Reviewers: sdardis
Subscribers: ehostunreach, llvm-commits
Differential Revision: https://reviews.llvm.org/D24824
llvm-svn: 284475
This patch assigns cost of the scaling used in addressing for Cortex-R52.
On Cortex-R52 a negated register offset takes longer than a non-negated
register offset, in a register-offset addressing mode.
Differential Revision: http://reviews.llvm.org/D25670
Reviewer: jmolloy
llvm-svn: 284460
As discussed on PR28461 we currently miss the chance to lower "fptosi <2 x double> %arg to <2 x i32>" to cvttpd2dq due to its use of illegal types.
This patch adds support for fptosi to 2i32 from both 2f64 and 2f32.
It also recognises that cvttpd2dq zeroes the upper 64-bits of the xmm result (similar to D23797) - we still don't do this for the cvttpd2dq/cvttps2dq intrinsics - this can be done in a future patch.
Differential Revision: https://reviews.llvm.org/D23808
llvm-svn: 284459
This patch adds simplified support for tail calls on ARM with XRay instrumentation.
Known issue: compiled with generic flags: `-O3 -g -fxray-instrument -Wall
-std=c++14 -ffunction-sections -fdata-sections` (this list doesn't include my
specific flags like --target=armv7-linux-gnueabihf etc.), the following program
#include <cstdio>
#include <cassert>
#include <xray/xray_interface.h>
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fC() {
std::printf("In fC()\n");
}
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fB() {
std::printf("In fB()\n");
fC();
}
[[clang::xray_always_instrument]] void __attribute__ ((noinline)) fA() {
std::printf("In fA()\n");
fB();
}
// Avoid infinite recursion in case the logging function is instrumented (so calls logging
// function again).
[[clang::xray_never_instrument]] void simplyPrint(int32_t functionId, XRayEntryType xret)
{
printf("XRay: functionId=%d type=%d.\n", int(functionId), int(xret));
}
int main(int argc, char* argv[]) {
__xray_set_handler(simplyPrint);
printf("Patching...\n");
__xray_patch();
fA();
printf("Unpatching...\n");
__xray_unpatch();
fA();
return 0;
}
gives the following output:
Patching...
XRay: functionId=3 type=0.
In fA()
XRay: functionId=3 type=1.
XRay: functionId=2 type=0.
In fB()
XRay: functionId=2 type=1.
XRay: functionId=1 type=0.
XRay: functionId=1 type=1.
In fC()
Unpatching...
In fA()
In fB()
In fC()
So for function fC() the exit sled seems to be called too much before function
exit: before printing In fC().
Debugging shows that the above happens because printf from fC is also called as
a tail call. So first the exit sled of fC is executed, and only then printf is
jumped into. So it seems we can't do anything about this with the current
approach (i.e. within the simplification described in
https://reviews.llvm.org/D23988 ).
Differential Revision: https://reviews.llvm.org/D25030
llvm-svn: 284456
Summary: This is especially important for 32-bit targets with 64-bit shuffle elements.This is similar to how PSHUFB and VPERMIL handle the same problem.
Reviewers: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25666
llvm-svn: 284451
Summary:
If we are loading an i16 value from a 32-bit memory location, then
we need to be able to truncate the loaded value to i16.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D25198
llvm-svn: 284397
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.
The only functional change is the name of a couple of command-line options.
llvm-svn: 284287
This is a patch to implement pr30640.
When a 64bit constant has the same hi/lo words, we can use rldimi to copy the low word into high word of the same register.
This optimization caused failure of test case bperm.ll because of not optimal heuristic in function SelectAndParts64. It chooses AND or ROTATE to extract bit groups from a register, and OR them together. This optimization lowers the cost of loading 64bit constant mask used in AND method, and causes different code sequence. But actually ROTATE method is better in this test case. The reason is in ROTATE method the final OR operation can be avoided since rldimi can insert the rotated bits into target register directly. So this patch also enhances SelectAndParts64 to prefer ROTATE method when the two methods have same cost and there are multiple bit groups need to be ORed together.
Differential Revision: https://reviews.llvm.org/D25521
llvm-svn: 284276
Summary:
We are using this helper for our 24-bit arithmetic combines, so we are now able to eliminate multi-use operations that mask the high-bits of 24-bit inputs (e.g. and x, 0xffffff)
Reviewers: arsenm, nhaehnle
Subscribers: tony-tye, arsenm, kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24672
llvm-svn: 284267
X86. The pass optimizes as a unit the entire wide load + shuffles pattern
produced by interleaved vectorization. This initial patch optimizes one pattern
(64-bit elements interleaved by a factor of 4). Future patches will generalize
to additional patterns.
Patch by Farhana Aleen
Differential revision: http://reviews.llvm.org/D24681
llvm-svn: 284260
Use PackedRegisterRef to store the register information in the graph nodes.
This commit also removes support for virtual registers. It has never been
tested or used. It will be possible to add it back if there is a need.
llvm-svn: 284255
This change adds transformations such as:
zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0))))
To:
srl(or(ctlz(x), ctlz(y)), log2(bitsize(x))
This optimisation is beneficial on Jaguar architecture only, where lzcnt has a good reciprocal throughput.
Other architectures such as Intel's Haswell/Broadwell or AMD's Bulldozer/PileDriver do not benefit from it.
For this reason the change also adds a "HasFastLZCNT" feature which gets enabled for Jaguar.
Differential Revision: https://reviews.llvm.org/D23446
llvm-svn: 284248
Summary:
This will be used for 64-bit MULHU, which is in turn used for the 64-bit
divide-by-constant optimization (see D24822).
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25289
llvm-svn: 284224
For compatiblity with binutils, define these instructions to take
two registers with a 16bit unsigned immediate. Both of the registers
have to be same for dahi and dati.
Reviewers: dsanders, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D21473
llvm-svn: 284218
Committing in the name of Ziv Izhar: After check-all and LGTM .
The following patch is for compatability with Microsoft.
Microsoft ignores the keyword "short" when used after a jmp, for example:
__asm {
jmp short label
label:
}
A test for that patch will be added in another patch, since it's located in clang's codegen tests. Link will be added shortly.
link to test: https://reviews.llvm.org/D24958
Differential Revision: https://reviews.llvm.org/D24957
llvm-svn: 284211
Windows itanium is identical to MSVC when dealing with everything but C++.
Lower the math routines into msvcrt rather than compiler-rt.
llvm-svn: 284175
Windows itanium is equivalent to MSVC except in C++ mode. Ensure that the
promote the 32-bit floating point operations to their 64-bit equivalences.
llvm-svn: 284173
This option indicates copy relocations support is available from the linker
when building as PIE and allows accesses to extern globals to avoid the GOT.
Differential Revision: https://reviews.llvm.org/D24849
llvm-svn: 284160
Retrying after upstream changes.
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and
merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 284151