Commit Graph

333 Commits

Author SHA1 Message Date
Jessica Paquette d87f54493d [MachineOutliner] NFC: Change IsTailCall to a call class + frame class
This commit

- Removes IsTailCall and replaces it with a target-defined unsigned
- Refactors getOutliningCallOverhead and getOutliningFrameOverhead so that they don't use IsTailCall
- Adds a call class + frame class classification to OutlinedFunction and Candidate respectively

This accomplishes a couple things.

Firstly, we don't need the notion of *tail call* in the general outlining algorithm.

Secondly, we now can have different "outlining classes" for each candidate within a set of candidates.
This will make it easy to add new ways to outline sequences for certain targets and dynamically choose
an appropriate cost model for a sequence depending on the context that that sequence lives in.

Ultimately, this should get us closer to being able to do something like, say avoid saving the link
register when outlining AArch64 instructions.

llvm-svn: 309475
2017-07-29 02:55:46 +00:00
Jessica Paquette 809d708b8a [MachineOutliner] NFC: Split up getOutliningBenefit
This is some more cleanup in preparation for some actual
functional changes. This splits getOutliningBenefit into
two cost functions: getOutliningCallOverhead and
getOutliningFrameOverhead. These functions return the
number of instructions that would be required to call
a specific function and the number of instructions
that would be required to construct a frame for a
specific funtion. The actual outlining benefit logic
is moved into the outliner, which calls these functions.

The goal of refactoring getOutliningBenefit is to:

- Get us closer to getting rid of the IsTailCall flag

- Further split up "target-specific" things and
"general algorithm" things

llvm-svn: 309356
2017-07-28 03:21:58 +00:00
Igor Breger db75455990 [X86] Move getX86ConditionCode() from X86FastISel.cpp to X86InstrInfo.cpp. NFC
Summary:
Move getX86ConditionCode() from X86FastISel.cpp to X86InstrInfo.cpp so it can be used by GloabalIsel instruction selector.
This is a pre-commit for a patch I'm working on to support G_ICMP. NFC.

Reviewers: zvi, guyblank, delena

Reviewed By: guyblank, delena

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D33038

llvm-svn: 302767
2017-05-11 06:36:37 +00:00
Serge Pavlov d526b13e61 Add extra operand to CALLSEQ_START to keep frame part set up previously
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to  CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.

This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.

The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
  affects all targets that use frame pseudo instructions and touched many
  files although the changes are uniform.
- Access to frame properties are implemented using special instructions
  rather than calls getOperand(N).getImm(). For X86 and ARM such
  replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
  instruction. These involve proper instruction initialization and
  methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
  frame parts initialized inside frame instruction pair and outside it.

The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.

Differential Revision: https://reviews.llvm.org/D32394

llvm-svn: 302527
2017-05-09 13:35:13 +00:00
Hans Wennborg 9b9a5358dd Re-commit r301040 "X86: Don't emit zero-byte functions on Windows"
In addition to the original commit, tighten the condition for when to
pad empty functions to COFF Windows.  This avoids running into problems
when targeting e.g. Win32 AMDGPU, which caused test failures when this
was committed initially.

llvm-svn: 301047
2017-04-21 21:48:41 +00:00
Hans Wennborg 04593000d8 Revert r301040 "X86: Don't emit zero-byte functions on Windows"
This broke almost all bots. Reverting while fixing.

llvm-svn: 301041
2017-04-21 21:10:37 +00:00
Hans Wennborg cb3e810714 X86: Don't emit zero-byte functions on Windows
Empty functions can lead to duplicate entries in the Guard CF Function
Table of a binary due to multiple functions sharing the same RVA,
causing the kernel to refuse to load that binary.

We had a terrific bug due to this in Chromium.

It turns out we were already doing this for Mach-O in certain
situations. This patch expands the code for that in
AsmPrinter::EmitFunctionBody() and renames
TargetInstrInfo::getNoopForMachoTarget() to simply getNoop() since it
seems it was used for not just Mach-O anyway.

Differential Revision: https://reviews.llvm.org/D32330

llvm-svn: 301040
2017-04-21 20:58:12 +00:00
Serge Pavlov 49acf9c8eb Use methods to access data stored with frame instructions
Instructions CALLSEQ_START..CALLSEQ_END and their target dependent
counterparts keep data like frame size, stack adjustment etc. These
data are accessed by getOperand using hard coded indices. It is
error prone way. This change implements the access by special methods,
which improve readability and allow changing data representation without
massive changes of index values.

Differential Revision: https://reviews.llvm.org/D31953

llvm-svn: 300196
2017-04-13 14:10:52 +00:00
Matthias Braun e959544517 TargetInstrInfo: Provide default implementation of isTailCall().
In fact this default implementation should be the only implementation,
keep it virtual for now to accomodate targets that don't model flags
correctly.

Differential Revision: https://reviews.llvm.org/D30747

llvm-svn: 297980
2017-03-16 20:02:30 +00:00
Jessica Paquette c984e21394 [Outliner] Add tail call support
This commit adds tail call support to the MachineOutliner pass. This allows
the outliner to insert jumps rather than calls in areas where tail calling is
possible. Outlined tail calls include the return or terminator of the basic
block being outlined from.

Tail call support allows the outliner to take returns and terminators into
consideration while finding candidates to outline. It also allows the outliner
to save more instructions. For example, in the X86-64 outliner, a tail called
outlined function saves one instruction since no return has to be inserted.

llvm-svn: 297653
2017-03-13 18:39:33 +00:00
Jessica Paquette 596f483a5e [Outliner] Fixed Asan bot failure in r296418
Fixed the asan bot failure which led to the last commit of the outliner being reverted.
The change is in lib/CodeGen/MachineOutliner.cpp in the SuffixTree's constructor. LeafVector
is no longer initialized using reserve but just a standard constructor.

llvm-svn: 297081
2017-03-06 21:31:18 +00:00
Matthias Braun 81f68ec3a9 Revert "Add MIR-level outlining pass"
Revert Machine Outliner for now, as it breaks the asan bot.

This reverts commit r296418.

llvm-svn: 296426
2017-02-28 02:24:30 +00:00
Matthias Braun d36410945f Add MIR-level outlining pass
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html

The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.

This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.

The outliner is run like so:

clang -mno-red-zone -mllvm -enable-machine-outliner file.c

Patch by Jessica Paquette<jpaquette@apple.com>!

rdar://29166825

Differential Revision: https://reviews.llvm.org/D26872

llvm-svn: 296418
2017-02-28 00:33:32 +00:00
Hans Wennborg a468601e0e [X86] Re-enable conditional tail calls and fix PR31257.
This reverts r294348, which removed support for conditional tail calls
due to the PR above. It fixes the PR by marking live registers as
implicitly used and defined by the now predicated tailcall. This is
similar to how IfConversion predicates instructions.

Differential Revision: https://reviews.llvm.org/D29856

llvm-svn: 295262
2017-02-16 00:04:05 +00:00
Hans Wennborg 819e3e02a9 [X86] Disable conditional tail calls (PR31257)
They are currently modelled incorrectly (as calls, which clobber
registers, confusing e.g. Machine Copy Propagation).

Reverting until we figure out the proper solution.

llvm-svn: 294348
2017-02-07 20:37:45 +00:00
Evandro Menezes 94edf02923 [CodeGen] Move MacroFusion to the target
This patch moves the class for scheduling adjacent instructions,
MacroFusion, to the target.

In AArch64, it also expands the fusion to all instructions pairs in a
scheduling block, beyond just among the predecessors of the branch at the
end.

Differential revision: https://reviews.llvm.org/D28489

llvm-svn: 293737
2017-02-01 02:54:34 +00:00
Matthias Braun 115efcd3d1 MachineScheduler: Export function to construct "default" scheduler.
This makes the createGenericSchedLive() function that constructs the
default scheduler available for the public API. This should help when
you want to get a scheduler and the default list of DAG mutations.

This also shrinks the list of default DAG mutations:
{Load|Store}ClusterDAGMutation and MacroFusionDAGMutation are no longer
added by default. Targets can easily add them if they need them. It also
makes it easier for targets to add alternative/custom macrofusion or
clustering mutations while staying with the default
createGenericSchedLive(). It also saves the callback back and forth in
TargetInstrInfo::enableClusterLoads()/enableClusterStores().

Differential Revision: https://reviews.llvm.org/D26986

llvm-svn: 288057
2016-11-28 20:11:54 +00:00
Michael Kuperstein 47eb85a003 [X86] Allow folding of stack reloads when loading a subreg of the spilled reg
We did not support subregs in InlineSpiller:foldMemoryOperand() because targets
may not deal with them correctly.

This adds a target hook to let the spiller know that a target can handle
subregs, and actually enables it for x86 for the case of stack slot reloads.
This fixes PR30832.

Differential Revision: https://reviews.llvm.org/D26521

llvm-svn: 287792
2016-11-23 18:33:49 +00:00
Peter Collingbourne 5c924d7117 Target: Remove unused entities.
llvm-svn: 283690
2016-10-09 04:38:57 +00:00
Craig Topper 202b453a8a [AVX-512] Add support for commuting VPTERNLOG instructions.
VPTERNLOG is a ternary instruction with an immediate specifying the logical operation to perform. For each bit position in the 3 source vectors the bit from each source is concatenated together and the resulting 3-bit value is used to select a bit in the immediate. This bit value is written to the result vector.

We can commute this by swapping operands and modifying the immediate. To modify the immediate we need to swap two pairs of bits. The pairs correspond to the locations in the immediate where the commuted operands bits have opposite values and the uncommuted operand has the same value. Bits 0 and 7 will never be swapped since the relevant bits from all sources are the same value.

This refactors and reuses parts of the FMA3 commuting code which is also a three operand instruction.

llvm-svn: 282132
2016-09-22 03:00:50 +00:00
Matt Arsenault 1b9fc8ed65 Finish renaming remaining analyzeBranch functions
llvm-svn: 281535
2016-09-14 20:43:16 +00:00
Matt Arsenault e8e0f5cac6 Make analyzeBranch family of instruction names consistent
analyzeBranch was renamed to use lowercase first, rename
the related set to match.

llvm-svn: 281506
2016-09-14 17:24:15 +00:00
Matt Arsenault a2b036e88b AArch64: Use TTI branch functions in branch relaxation
The main change is to return the code size from
InsertBranch/RemoveBranch.

Patch mostly by Tim Northover

llvm-svn: 281505
2016-09-14 17:23:48 +00:00
Craig Topper 69be1bd352 [X86] Make a helper method into a static function local to the cpp file.
llvm-svn: 281154
2016-09-11 05:33:35 +00:00
Hans Wennborg 75e25f6812 X86: Fold tail calls into conditional branches where possible (PR26302)
When branching to a block that immediately tail calls, it is possible to fold
the call directly into the branch if the call is direct and there is no stack
adjustment, saving one byte.

Example:

  define void @f(i32 %x, i32 %y) {
  entry:
    %p = icmp eq i32 %x, %y
    br i1 %p, label %bb1, label %bb2
  bb1:
    tail call void @foo()
    ret void
  bb2:
    tail call void @bar()
    ret void
  }

before:

  f:
          movl    4(%esp), %eax
          cmpl    8(%esp), %eax
          jne     .LBB0_2
          jmp     foo
  .LBB0_2:
          jmp     bar

after:

  f:
          movl    4(%esp), %eax
          cmpl    8(%esp), %eax
          jne     bar
  .LBB0_1:
          jmp     foo

I don't expect any significant size savings from this (on a Clang bootstrap I
saw 288 bytes), but it does make the code a little tighter.

This patch only does 32-bit, but 64-bit would work similarly.

Differential Revision: https://reviews.llvm.org/D24108

llvm-svn: 280832
2016-09-07 17:52:14 +00:00
Dean Michael Berris 40e6ba16a1 [XRay][NFC] Promote isTailCall() as virtual in TargetInstrInfo.
This change is broken out from D23986, where XRay detects tail call
exits.

llvm-svn: 280331
2016-09-01 01:03:22 +00:00
Vyacheslav Klochkov 6daefcf626 X86-FMA3: Implemented commute transformation for EVEX/AVX512 FMA3 opcodes.
This helped to improved memory-folding and register coalescing optimizations.

Also, this patch fixed the tracker #17229.

Reviewer: Craig Topper.
Differential Revision: https://reviews.llvm.org/D23108

llvm-svn: 278431
2016-08-11 22:07:33 +00:00
Matthias Braun 7313ca6dbf X86InstrInfo: Update liveness in classifyLea()
We need to update liveness information when we create COPYs in
classifyLea().

This fixes http://llvm.org/28301

llvm-svn: 278086
2016-08-09 01:47:26 +00:00
Craig Topper 6172b0b3e9 [X86] Make one of the FMA3 commuting methods static. Remove a call to isFMA3 just to get the IsIntrisic flag, instead get it during the first call and pass it along. NFC
llvm-svn: 276520
2016-07-23 07:16:53 +00:00
Jacques Pienaar 71c30a14b7 Rename AnalyzeBranch* to analyzeBranch*.
Summary: NFC. Rename AnalyzeBranch/AnalyzeBranchPredicate to analyzeBranch/analyzeBranchPredicate to follow LLVM coding style and be consistent with TargetInstrInfo's analyzeCompare and analyzeSelect.

Reviewers: tstellarAMD, mcrosier

Subscribers: mcrosier, jholewinski, jfb, arsenm, dschuff, jyknight, dsanders, nemanjai

Differential Revision: https://reviews.llvm.org/D22409

llvm-svn: 275564
2016-07-15 14:41:04 +00:00
Duncan P. N. Exon Smith 9cfc75c214 CodeGen: Use MachineInstr& in TargetInstrInfo, NFC
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr.  This is a
general API improvement.

Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other.  Instead I've done everything as a block and just
updated what was necessary.

This is mostly mechanical fixes: adding and removing `*` and `&`
operators.  The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency.  Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.

As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.

Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy.  I couldn't run tests
for AVR since llc doesn't link with it turned on.

llvm-svn: 274189
2016-06-30 00:01:54 +00:00
Benjamin Kramer bdc4956bac Pass DebugLoc and SDLoc by const ref.
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.

llvm-svn: 272512
2016-06-12 15:39:02 +00:00
Rafael Espindola 712f957cae Simplify handling of hidden stub.
Since r207518 they are printed exactly like non-hidden stubs on x86 and
since r207517 on ARM.

This means we can use a single set for all stubs in those platforms.

llvm-svn: 269776
2016-05-17 16:01:32 +00:00
Jonas Paulsson 8e5b0c65cc [foldMemoryOperand()] Pass LiveIntervals to enable liveness check.
SystemZ (and probably other targets as well) can fold a memory operand
by changing the opcode into a new instruction that as a side-effect
also clobbers the CC-reg.

In order to do this, liveness of that reg must first be checked. When
LIS is passed, getRegUnit() can be called on it and the right
LiveRange is computed on demand.

Reviewed by Matthias Braun.
http://reviews.llvm.org/D19861

llvm-svn: 269026
2016-05-10 08:09:37 +00:00
Craig Topper e012ede137 [X86] Reduce memory usage of MemOp2RegOp and RegOp2MemOp folding maps.
llvm-svn: 268164
2016-04-30 17:59:49 +00:00
Hans Wennborg 4ae5119eeb X86: Use push-pop for materializing 8-bit immediates for minsize (take 2)
This is the same as r255936, with added logic for avoiding clobbering of the
red zone (PR26023).

Differential Revision: http://reviews.llvm.org/D18246

llvm-svn: 264375
2016-03-25 01:10:56 +00:00
Cong Hou 94710840fb Allow X86::COND_NE_OR_P and X86::COND_NP_OR_E to be reversed.
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:

jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...

AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:

jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...

However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.

Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.

In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.


Differential Revision: http://reviews.llvm.org/D11393

llvm-svn: 264199
2016-03-23 21:45:37 +00:00
Chad Rosier c27a18f39f [TII] Allow getMemOpBaseRegImmOfs() to accept negative offsets. NFC.
http://reviews.llvm.org/D17967

llvm-svn: 263021
2016-03-09 16:00:35 +00:00
Duncan P. N. Exon Smith 6307eb5518 CodeGen: TII: Take MachineInstr& in predicate API, NFC
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest).  All of these
functions require non-null parameters already, so references are more
clear.  As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.

No functionality change intended.

llvm-svn: 261605
2016-02-23 02:46:52 +00:00
Benjamin Kramer d477e9e378 Revert "Allow X86::COND_NE_OR_P and X86::COND_NP_OR_E to be reversed."
and "Add a missing test case for r258847."

This reverts commit r258847, r258848. Causes miscompilations and backend
errors.

llvm-svn: 258927
2016-01-27 12:44:12 +00:00
Cong Hou 551a57f797 Allow X86::COND_NE_OR_P and X86::COND_NP_OR_E to be reversed.
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:

jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...

AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:

jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...

However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.

Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.

In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.


Differential Revision: http://reviews.llvm.org/D11393

llvm-svn: 258847
2016-01-26 20:08:01 +00:00
David Majnemer 869be0a4a6 Revert "[X86] Use push-pop for materializing small constants under 'minsize'"
The red zone consists of 128 bytes beyond the stack pointer so that the
allocation of objects in leaf functions doesn't require decrementing
rsp.  In r255656, we introduced an optimization that would cheaply
materialize certain constants via push/pop.  Push decrements the stack
pointer and stores it's result at what is now the top of the stack.
However, this means that using push/pop would encroach on the red zone.
PR26023 gives an example where this corrupts an object in the red zone.

llvm-svn: 256808
2016-01-05 02:32:06 +00:00
Hans Wennborg a6a2e512cf [X86] Use push-pop for materializing small constants under 'minsize'
Use the 3-byte (4 with REX prefix) push-pop sequence for materializing
small constants. This is smaller than using a mov (5, 6 or 7 bytes
depending on size and REX prefix), but it's likely to be slower, so
only used for 'minsize'.

This is a follow-up to r255656.

Differential Revision: http://reviews.llvm.org/D15549

llvm-svn: 255936
2015-12-17 23:18:39 +00:00
Andrew Kaylor 4731bea3e5 Improved the operands commute transformation for X86-FMA3 instructions.
All 3 operands of FMA3 instructions are commutable now.

Patch by Slava Klochkov

Reviewers: Quentin Colombet(qcolombet), Ahmed Bougacha(ab).

Differential Revision: http://reviews.llvm.org/D13269

llvm-svn: 252335
2015-11-06 19:47:25 +00:00
Simon Pilgrim 7e6606f4f1 [X86][SSE] Add general memory folding for (V)INSERTPS instruction
This patch improves the memory folding of the inserted float element for the (V)INSERTPS instruction.

The existing implementation occurs in the DAGCombiner and relies on the narrowing of a whole vector load into a scalar load (and then converted into a vector) to (hopefully) allow folding to occur later on. Not only has this proven problematic for debug builds, it also prevents other memory folds (notably stack reloads) from happening.

This patch removes the old implementation and moves the folding code to the X86 foldMemoryOperand handler. A new private 'special case' function - foldMemoryOperandCustom - has been added to deal with memory folding of instructions that can't just use the lookup tables - (V)INSERTPS is the first of several that could be done.

It also tweaks the memory operand folding code with an additional pointer offset that allows existing memory addresses to be modified, in this case to convert the vector address to the explicit address of the scalar element that will be inserted.

Unlike the previous implementation we now set the insertion source index to zero, although this is ignored for the (V)INSERTPSrm version, anything that relied on shuffle decodes (such as unfolding of insertps loads) was incorrectly calculating the source address - I've added a test for this at insertps-unfold-load-bug.ll

Differential Revision: http://reviews.llvm.org/D13988

llvm-svn: 252074
2015-11-04 20:48:09 +00:00
Benjamin Kramer 5dfcda73d5 [X86] Rip out orphaned method declarations and other dead code. NFC.
llvm-svn: 250406
2015-10-15 14:09:59 +00:00
Andrew Kaylor 16c4da03d5 Improved the interface of methods commuting operands, improved X86-FMA3 mem-folding&coalescing.
Patch by Slava Klochkov (vyacheslav.n.klochkov@intel.com)

Differential Revision: http://reviews.llvm.org/D11370

llvm-svn: 248735
2015-09-28 20:33:22 +00:00
Chad Rosier 03a47305ec [Machine Combiner] Refactor machine reassociation code to be target-independent.
No functional change intended.
Patch by Haicheng Wu <haicheng@codeaurora.org>!

http://reviews.llvm.org/D12887
PR24522

llvm-svn: 248164
2015-09-21 15:09:11 +00:00
Andrew Kaylor af083d4cf9 Expose hasLiveCondCodeDef as a member function of the X86InstrInfo class. NFC
This takes the existing static function hasLiveCondCodeDef and makes it a member function of the X86InstrInfo class. This is a useful utility function that an upcoming change would like to use. NFC.

Patch by: Kevin B. Smith
Differential Revision: http://reviews.llvm.org/D12371

llvm-svn: 246073
2015-08-26 20:36:52 +00:00
Alex Lorenz 49873a8382 MIR Serialization: Initial serialization of the machine operand target flags.
This commit implements the initial serialization of the machine operand target
flags. It extends the 'TargetInstrInfo' class to add two new methods that help
to provide text based serialization for the target flags.

This commit can serialize only the X86 target flags, and the target flags for
the other targets will be serialized in the follow-up commits.

Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244185
2015-08-06 00:44:07 +00:00