from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 341754
The command line option -fvisibility-inlines-hidden makes inlined method hidden, but it is expected not to affect the visibility of static local variables in the function.
However, Clang makes the static local variables in the function also hidden as reported in PR37595. This problem causes LLVM bootstarp failure on Fedora 28 if configured with -DBUILD_SHARED_LIBS=ON.
This patch makes the behavior of -fvisibility-inlines-hidden option to be consistent with that of gcc; the option does not change the visibility of the static local variables if the containing function does not associated with explicit visibility attribute and becomes hidden due to this option.
Differential Revision: https://reviews.llvm.org/D50968
llvm-svn: 340386
This commit adds the flag -fno-c++-static-destructors and the attributes
[[clang::no_destroy]] and [[clang::always_destroy]]. no_destroy specifies that a
specific static or thread duration variable shouldn't have it's destructor
registered, and is the default in -fno-c++-static-destructors mode.
always_destroy is the opposite, and is the default in -fc++-static-destructors
mode.
A variable whose destructor is disabled (either because of
-fno-c++-static-destructors or [[clang::no_destroy]]) doesn't count as a use of
the destructor, so we don't do any access checking or mark it referenced. We
also don't emit -Wexit-time-destructors for these variables.
rdar://21734598
Differential revision: https://reviews.llvm.org/D50994
llvm-svn: 340306
DeclContext has a little less than 8 bytes free due to the alignment
requirements on 64 bits archs. This set of patches moves the
bit-fields from classes deriving from DeclContext into DeclContext.
On 32 bits archs this increases the size of DeclContext by 4 bytes
but this is balanced by an equal or larger reduction in the size
of the classes deriving from it.
On 64 bits archs the size of DeclContext stays the same but
most of the classes deriving from it shrink by 8/16 bytes.
(-print-stats diff here https://reviews.llvm.org/D49728)
When doing an -fsyntax-only on all of Boost this result
in a 3.6% reduction in the size of all Decls and
a 1% reduction in the run time due to the lower cache
miss rate.
For now CXXRecordDecl is not touched but there is
an easy 6 (if I count correctly) bytes gain available there
by moving some bits from DefinitionData into the free
space of DeclContext. This will be the subject of another patch.
This patch sequence also enable the possibility of refactoring
FunctionDecl: To save space some bits from classes deriving from
FunctionDecl were moved to FunctionDecl. This resulted in a
lot of stuff in FunctionDecl which do not belong logically to it.
After this set of patches however it is just a simple matter of
adding a SomethingDeclBitfields in DeclContext and moving the
bits to it from FunctionDecl.
This first patch introduces the anonymous union in DeclContext
and all the *DeclBitfields classes holding the bit-fields, and moves
the bits from TagDecl, EnumDecl and RecordDecl into DeclContext.
This patch is followed by https://reviews.llvm.org/D49732,
https://reviews.llvm.org/D49733 and https://reviews.llvm.org/D49734.
Differential Revision: https://reviews.llvm.org/D49729
Patch By: bricci
llvm-svn: 338630
As documented here: https://software.intel.com/en-us/node/682969 and
https://software.intel.com/en-us/node/523346. cpu_dispatch multiversioning
is an ICC feature that provides for function multiversioning.
This feature is implemented with two attributes: First, cpu_specific,
which specifies the individual function versions. Second, cpu_dispatch,
which specifies the location of the resolver function and the list of
resolvable functions.
This is valuable since it provides a mechanism where the resolver's TU
can be specified in one location, and the individual implementions
each in their own translation units.
The goal of this patch is to be source-compatible with ICC, so this
implementation diverges from the ICC implementation in a few ways:
1- Linux x86/64 only: This implementation uses ifuncs in order to
properly dispatch functions. This is is a valuable performance benefit
over the ICC implementation. A future patch will be provided to enable
this feature on Windows, but it will obviously more closely fit ICC's
implementation.
2- CPU Identification functions: ICC uses a set of custom functions to identify
the feature list of the host processor. This patch uses the cpu_supports
functionality in order to better align with 'target' multiversioning.
1- cpu_dispatch function def/decl: ICC's cpu_dispatch requires that the function
marked cpu_dispatch be an empty definition. This patch supports that as well,
however declarations are also permitted, since the linker will solve the
issue of multiple emissions.
Differential Revision: https://reviews.llvm.org/D47474
llvm-svn: 337552
Functions that are a sub-Decl of a record were hashed differently than other
functions. This change keeps the AddFunctionDecl function and the hash of
records now calls this function. In addition, AddFunctionDecl has an option
to perform a hash as if the body was absent, which is required for some
checks after loading modules. Additional logic prevents multiple error
message from being printed.
llvm-svn: 336632
Summary:
Previously this triggered a -Wundefined-internal warning. But it's not
an undefined variable -- any variable of this form is a pointer to the
base of GPU core's shared memory.
Reviewers: tra
Subscribers: sanjoy, rsmith
Differential Revision: https://reviews.llvm.org/D46782
llvm-svn: 332621
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
Summary:
Under some conditions, LinkageComputer can get the visibility for
ClassTemplateSpecializationDecl wrong because it failed to find the Decl
that has the explicit visibility.
This fixes:
llvm.org/bugs/pr36810
rdar://problem/38080953
Reviewers: rsmith, arphaman, doug.gregor
Reviewed By: doug.gregor
Subscribers: doug.gregor, cfe-commits
Differential Revision: https://reviews.llvm.org/D44670
llvm-svn: 330338
registers.
This patch fixes a bug in r328731 that caused structs transitively
containing __weak fields to be passed in registers. The patch replaces
the flag RecordDecl::CanPassInRegisters with a 2-bit enum that indicates
whether the struct or structs containing the struct are forced to be
passed indirectly.
This reapplies r329617. r329617 didn't specify the underlying type for
enum ArgPassingKind, which caused regression tests to fail on a windows
bot.
rdar://problem/39194693
Differential Revision: https://reviews.llvm.org/D45384
llvm-svn: 329635
registers.
This patch fixes a bug in r328731 that caused structs transitively
containing __weak fields to be passed in registers. The patch replaces
the flag RecordDecl::CanPassInRegisters with a 2-bit enum that indicates
whether the struct or structs containing the struct are forced to be
passed indirectly.
rdar://problem/39194693
llvm-svn: 329617
ObjC and ObjC++ pass non-trivial structs in a way that is incompatible
with each other. For example:
typedef struct {
id f0;
__weak id f1;
} S;
// this code is compiled in c++.
extern "C" {
void foo(S s);
}
void caller() {
// the caller passes the parameter indirectly and destructs it.
foo(S());
}
// this function is compiled in c.
// 'a' is passed directly and is destructed in the callee.
void foo(S a) {
}
This patch fixes the incompatibility by passing and returning structs
with __strong or weak fields using the C ABI in C++ mode. __strong and
__weak fields in a struct do not cause the struct to be destructed in
the caller and __strong fields do not cause the struct to be passed
indirectly.
Also, this patch fixes the microsoft ABI bug mentioned here:
https://reviews.llvm.org/D41039?id=128767#inline-364710
rdar://problem/38887866
Differential Revision: https://reviews.llvm.org/D44908
llvm-svn: 328731
This patch uses the infrastructure added in r326307 for enabling
non-trivial fields to be declared in C structs to allow __weak fields in
C structs in ARC.
This recommits r327206, which was reverted because it caused
module-enabled builders to fail. I discovered that the
CXXRecordDecl::CanPassInRegisters flag wasn't being set correctly in
some cases after I moved it to RecordDecl.
Thanks to Eric Liu for helping me investigate the bug.
rdar://problem/33599681
https://reviews.llvm.org/D44095
llvm-svn: 327870
This patch uses the infrastructure added in r326307 for enabling
non-trivial fields to be declared in C structs to allow __weak fields in
C structs in ARC.
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D44095
llvm-svn: 327206
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
llvm-svn: 326416
ARC mode.
Declaring __strong pointer fields in structs was not allowed in
Objective-C ARC until now because that would make the struct non-trivial
to default-initialize, copy/move, and destroy, which is not something C
was designed to do. This patch lifts that restriction.
Special functions for non-trivial C structs are synthesized that are
needed to default-initialize, copy/move, and destroy the structs and
manage the ownership of the objects the __strong pointer fields point
to. Non-trivial structs passed to functions are destructed in the callee
function.
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D41228
llvm-svn: 326307
We can stash the cached transparent tag bit in existing pointer padding.
Everything coming out of ASTContext is always aligned to a multiple of
8, so we have 8 spare bits.
llvm-svn: 323528
We should (almost) never consider a device-side declaration to match a
library builtin functio. Otherwise clang may ignore the implementation
provided by the CUDA headers and emit clang's idea of the builtin.
Differential Revision: https://reviews.llvm.org/D42319
llvm-svn: 323239
Extend the hashing to functions, which allows detection of function definition
mismatches across modules. This is a re-commit of r320230.
llvm-svn: 321395
An unscoped enumeration used as template argument, should not have any
qualified information about its enclosing scope, as its visibility is
global.
In the case of scoped enumerations, they must include information
about their enclosing scope.
Patch by Carlos Alberto Enciso!
Differential Revision: https://reviews.llvm.org/D39239
llvm-svn: 321312
whether they have an initializer.
We cannot distinguish between a declaration of a variable template
specialization and a definition of one that lacks an initializer without this,
and would previously mistake the latter for the former.
llvm-svn: 319605
These functions were defined as static members of TemplateSpecializationType.
Now they are moved to namespace level. Previously there were different
implementations for lists containing TemplateArgument and TemplateArgumentLoc,
now these implementations share the same code.
This change is a result of refactoring patch D40508. NFC.
llvm-svn: 319178
When we merge together class definitions, we can end up with the canonical
declaration of a field not being the one that was lexically within the
canonical definition of the class. Additionally, when we merge class
definitions via update records (eg, for a template specialization whose
declaration is instantiated in one module and whose definition is instantiated
in multiple others), we can end up with the list of lexical contents for the
class not including a particular declaration of a field whose lexical parent is
that class definition. In the worst case, we have a field whose canonical
declaration's lexical parent has no fields, and in that case this attempt to
number the fields by walking the fields in the declaration of the class that
contained one of the canonical fields will fail.
Instead, when numbering fields in a class, do the obvious thing: walk the
fields in the definition.
I'm still trying to reduce a testcase; the setup that leads to the above
scenario seems to be quite fragile.
llvm-svn: 318245
They might have different visibility, and thus discarding all but one of them
can result in rejecting valid code. Also fix name lookup to cope with multiple
using-directives being found that denote the same namespace, where some are not
visible -- don't cache an "already visited" state for a using-directive that we
didn't visit because it was hidden.
llvm-svn: 316965
This feature is not (yet) approved by the C++ committee, so this is liable to
be reverted or significantly modified based on committee feedback.
No functionality change intended for existing code (a new type must be defined
in namespace std to take advantage of this feature).
llvm-svn: 315662
When declaring an entity in the "purview" of a module, it's never a
redeclaration of an entity in the purview of a default module or in no module
("in the global module"). Don't consider those other declarations as possible
redeclaration targets if they're not visible, and reject any cases where we
pick a prior visible declaration that violates this rule.
This reinstates r315251 and r315256, reverted in r315309 and r315308
respectively, tweaked to avoid triggering a linkage calculation when declaring
implicit special members (this exposed our pre-existing issue with typedef
names for linkage changing the linkage of types whose linkage has already been
computed and cached in more cases). A testcase for that regression has been
added in r315366.
llvm-svn: 315379