The list of destination load ops while evaluating producer-consumer
fusion wasn't being maintained as a set, and as such, duplicate load ops
were being added to it. Although this is harmless correctness-wise, it's
a killer efficiency-wise and it prevents interesting/useful fusions
(including for eg. reshapes into a matmul). The reason the latter
fusions would be missed is that a slice union would be unnecessarily
needed due to the duplicate load ops on a memref added to the 'dst
loads' list. Since slice union is unimplemented for the local var case,
a single destination load op that leads to local vars (like a floordiv /
mod producing fusion), a common case, would not get fused due to an
unnecessary union being tried with itself. (The union would actually be
the same thing but we would bail out.)
Besides the above, this would also significantly speed up fusion as all
the unnecessary slice computations / unions, checks, etc. due to the
duplicates go away.
Differential Revision: https://reviews.llvm.org/D79547
When the folding is performed in place, the `::fold` function does not populate
its `results` argument to indicate that. (In the folding hook for single-result
operations, the result of the original operation is expected to be returned,
but it is then ignored by the wrapper.) `OperationFolder::create` would
erronously rely on the _operation_ having zero results instead of on the
_folding_ producing zero new results to populate the list of results with those
of the original operation. This would lead to a crash for single-result ops
with in-place folds where the first result is accessed uncondtionally because
the list of results was not properly populated. Use the list of values produced
by the folding instead.
Differential Revision: https://reviews.llvm.org/D79497
The types of forward references are checked that they match with other
uses, but they do not check they match with the definition.
func @forward_reference_type_check() -> (i8) {
br ^bb2
^bb1:
return %1 : i8
^bb2:
%1 = "bar"() : () -> (f32)
br ^bb1
}
Would be parsed and the use site of '%1' would be silently changed to
'f32'.
This commit adds a test for this case, and a check during parsing for
the types to match.
Patch by Matthew Parkinson <mattpark@microsoft.com>
Closes D79317.
Summary:
This revision adds a conservative canonicalization pattern for MemRefCastOp that are typically inserted during ViewOp and SubViewOp canonicalization.
Ideally such canonicalizations would propagate the type to consumers but this is not a local behavior. As a consequence MemRefCastOp are introduced to keep type compatibility but need to be cleaned up later, in the case where more dynamic behavior than necessary is introduced.
Differential Revision: https://reviews.llvm.org/D79438
Essentially takes the lld/Common/Threads.h wrappers and moves them to
the llvm/Support/Paralle.h algorithm header.
The changes are:
- Remove policy parameter, since all clients use `par`.
- Rename the methods to `parallelSort` etc to match LLVM style, since
they are no longer C++17 pstl compatible.
- Move algorithms from llvm::parallel:: to llvm::, since they have
"parallel" in the name and are no longer overloads of the regular
algorithms.
- Add range overloads
- Use the sequential algorithm directly when 1 thread is requested
(skips task grouping)
- Fix the index type of parallelForEachN to size_t. Nobody in LLVM was
using any other parameter, and it made overload resolution hard for
for_each_n(par, 0, foo.size(), ...) because 0 is int, not size_t.
Remove Threads.h and update LLD for that.
This is a prerequisite for parallel public symbol processing in the PDB
library, which is in LLVM.
Reviewed By: MaskRay, aganea
Differential Revision: https://reviews.llvm.org/D79390
This revision allows for creating DenseElementsAttrs and accessing elements using std::complex<APInt>/std::complex<APFloat>. This allows for opaquely accessing and transforming complex values. This is used by the printer/parser to provide pretty printing for complex values. The form for complex values matches that of std::complex, i.e.:
```
// `(` element `,` element `)`
dense<(10,10)> : tensor<complex<i64>>
```
Differential Revision: https://reviews.llvm.org/D79296
This revision adds support for storing ComplexType elements inside of a DenseElementsAttr. We store complex objects as an array of two elements, matching the definition of std::complex. There is no current attribute storage for ComplexType, but DenseElementsAttr provides API for access/creation using std::complex<>. Given that the internal implementation of DenseElementsAttr is already fairly opaque, the only real complexity here is in the printing/parsing. This revision keeps it simple for now and always uses hex when printing complex elements. A followup will add prettier syntax for this.
Differential Revision: https://reviews.llvm.org/D79281
We see intermittent build errors on the windows buildbot because
mlir-opt is including Linalg headers which haven't been built yet.
This dependence should be resolved by declaring a PUBLIC dependence
on the Linalg library when building MLIROptMain.
This addresses a compilation failure on GCC 5:
error: #error This file requires compiler and library support for the
ISO C++ 2011 standard. This support must be enabled with the -std=c++11
or -std=gnu++11 compiler options.
#error This file requires compiler and library support
Differential Revision: https://reviews.llvm.org/D79439
DMA operation classes in the Standard dialect (`DmaStartOp` and `DmaWaitOp`)
provide helper functions that make numerous assumptions about the number and
order of operands, and about their types. However, these assumptions were not
checked in the verifier, leading to assertion failures or crashes when helper
functions were used on ill-formed ops. Some of the assuptions were checked in
the custom parser (and thus could not check assumption violations in ops
constructed programmatically, e.g., during rewrites) and others were not
checked at all. Introduce the verifiers for all these assumptions and drop
unnecessary checks in the parser that are now covered by the verifier.
Addresses PR45560.
Differential Revision: https://reviews.llvm.org/D79408
Summary:
Adds the loop unroll transformation for loop::ForOp.
Adds support for promoting the body of single-iteration loop::ForOps into its containing block.
Adds check tests for loop::ForOps with dynamic and static lower/upper bounds and step.
Care was taken to share code (where possible) with the AffineForOp unroll transformation to ease maintenance and potential future transition to a LoopLike construct on which loop transformations for different loop types can implemented.
Reviewers: ftynse, nicolasvasilache
Reviewed By: ftynse
Subscribers: bondhugula, mgorny, zzheng, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79184
Adding this pattern reduces code duplication. There is no need to have a
custom implementation for lowering to llvm.cmpxchg.
Differential Revision: https://reviews.llvm.org/D78753
Portions of MLIR which depend on LLVMIR generally need to depend on
intrinsics_gen, to ensure that tablegen'd header files from LLVM are built
first. Without this, we get errors, typically about llvm/IR/Attributes.inc
not being found.
Note that previously the Linalg Dialect depended on intrinsics_gen, but it
doesn't need to, since it doesn't use LLVMIR.
Differential Revision: https://reviews.llvm.org/D79389
This revision adds support for merging identical blocks, or those with the same operations that branch to the same successors. Operands that mismatch between the different blocks are replaced with new block arguments added to the merged block.
Differential Revision: https://reviews.llvm.org/D79134
This change removes tabs from the comments printed by the asmprinter after basic
block declarations in favor of two spaces. This is currently the only place in
the printed IR that uses tabs.
Differential Revision: https://reviews.llvm.org/D79377
Summary:
In the particular case of an insertion in a block without a terminator, the BlockBuilder insertion point should be block->end().
Adding a unit test to exercise this.
Differential Revision: https://reviews.llvm.org/D79363
This allows for walking the operations nested directly within a region, without traversing nested regions.
Differential Revision: https://reviews.llvm.org/D79056
Summary:
As D78974, this patch implements the emulation for store op. The emulation is
done with atomic operations. E.g., if the storing value is i8, rewrite the
StoreOp to:
1) load a 32-bit integer
2) clear 8 bits in the loading value
3) store 32-bit value back
4) load a 32-bit integer
5) modify 8 bits in the loading value
6) store 32-bit value back
The step 1 to step 3 are done by AtomicAnd as one atomic step, and the step 4
to step 6 are done by AtomicOr as another atomic step.
Differential Revision: https://reviews.llvm.org/D79272
This std::copy_n copies 8 byte data (APInt raw data) by 1 byte from the
beginning of char array. This is no problem in little endian, but the
data is not copied correctly in big endian because the data should be
copied from the end of the char array.
- Example of 4 byte data (such as float32)
Little endian (First 4 bytes):
Address | 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08
Data | 0xcd 0xcc 0x8c 0x3f 0x00 0x00 0x00 0x00
Big endian (Last 4 bytes):
Address | 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08
Data | 0x00 0x00 0x00 0x00 0x3f 0x8c 0xcc 0xcd
In general, when it copies N(N<8) byte data in big endian, the start
address should be incremented by (8 - N) bytes.
The original code has no problem when it includes 8 byte data(such as
double) even in big endian.
Differential Revision: https://reviews.llvm.org/D78076
- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so
After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.
This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.
Differential Revision: https://reviews.llvm.org/D78773
[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB
Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS. This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary. Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.
Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library. Previously, some libraries still used
add_llvm_library. However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM. Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR
A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so. To catch these errors more directly, there's now
mlir_check_all_link_libraries.
To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.
tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067
[MLIR] Move from using target_link_libraries to LINK_LIBS
This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243
Three commits have been squashed to avoid intermediate build breakage.
Linalg transformations are currently exposed as DRRs.
Unfortunately RewriterGen does not play well with the line of work on named linalg ops which require variadic operands and results.
Additionally, DRR is arguably not the right abstraction to expose compositions of such patterns that don't rely on SSA use-def semantics.
This revision abandons DRRs and exposes manually written C++ patterns.
Refactorings and cleanups are performed to uniformize APIs.
This refactoring will allow replacing the currently manually specified Linalg named ops.
A collateral victim of this refactoring is the `tileAndFuse` DRR, and the one associated test, which will be revived at a later time.
Lastly, the following 2 tests do not add value and are altered:
- a dot_perm tile + interchange test does not test anything new and is removed
- a dot tile + lower to loops does not need 2-D tiling and is trimmed.
Add `CreateComplexOp`, `ReOp`, and `ImOp` to the standard dialect.
This is the first step to support complex numbers.
Differential Revision: https://reviews.llvm.org/D79159
The current BufferPlacement implementation tries to find Alloc and Dealloc
operations in order to move them. However, this is a tight coupling to
standard-dialect ops which has been removed in this CL.
Differential Revision: https://reviews.llvm.org/D78993
This is useful for several reasons:
* In some situations the user can guarantee that thread-safety isn't necessary and don't want to pay the cost of synchronization, e.g., when parsing a very large module.
* For things like logging threading is not desirable as the output is not guaranteed to be in stable order.
This flag also subsumes the pass manager flag for multi-threading.
Differential Revision: https://reviews.llvm.org/D79266
In cmake, dependencies on generated files require some sophistication in the build system. At build time, files are parsed to determine which headers they depend on and these dependencies are injected into the build system. This works well with ninja, but has some constraints with the makefile generator. According to the cmake documentation, this only works reliably within the same directory.
This patch expands the usage of mlir-headers to include all generated headers and adds an mlir-generic-headers target which triggers generation of dialect-independent headers. These targets are used to express dependencies on generated headers. This is mostly handled in AddMLIR.cmake and only a few CMakeLists.txt files need to change.
Differential Revision: https://reviews.llvm.org/D79242
These libraries are distinct from other things in Analysis in that they
operate only on core IR concepts. This also simplifies dependencies
so that Dialect -> Analysis -> Parser -> IR. Previously, the parser depended
on portions of the the Analysis directory as well, which sometimes
caused issues with the way the cmake makefile generator discovers
dependencies on generated files during compilation.
Differential Revision: https://reviews.llvm.org/D79240
Summary:
This is an initial version, currently supports OpString and OpLine
for autogenerated operations during (de)serialization.
Differential Revision: https://reviews.llvm.org/D79091
The current OpBuilder has a set of virtual functions required by the fact that the PatternRewriter inherits from it for convenience. The PatternRewriter is required to know about IR mutations for correctness. This revision changes the relationship to be explicit by having users register a listener with the builder instead of using inheritance/vtables. This still requires that users properly transfer the listener when creating new builders, but has several benefits:
* More than one builder can be created during pattern rewrites(assuming that the listener is properly forwarded)
* OpBuilder no longer requires a vtable, and thus does not incur the cost when a listener isn't present.
Differential Revision: https://reviews.llvm.org/D79206
Summary:
Maps ZeroExtendIOp and TruncateIOp to spirv::UConvertOp and spirv::SConvertOp.
Depends On D78974
Differential Revision: https://reviews.llvm.org/D79143
Summary:
The current implementation in SPIRVTypeConverter just unconditionally turns
everything into 32-bit if it doesn't meet the requirements of extensions or
capabilities. In this case, we can load a 32-bit value and then do bit
extraction to get the value.
Differential Revision: https://reviews.llvm.org/D78974
- Extract common logic between -convert-gpu-to-nvvm and -convert-gpu-to-rocdl.
- Cope with the fact that alloca operates on different addrspaces between NVVM
and ROCDL.
- Modernize unit tests for ROCDL dialect.
Differential Revision: https://reviews.llvm.org/D79021
Summary:
This revision cleans up a layer of complexity in ScopedContext and uses InsertGuard instead of previously manual bookkeeping.
The method `getBuilder` is renamed to `getBuilderRef` and spurious copies of OpBuilder are tracked.
This results in some canonicalizations not happening anymore in the Linalg matmul to vector test. This test is retired because relying on DRRs for this has been shaky at best. The solution will be better support to write fused passes in C++ with more idiomatic pattern composition and application.
Differential Revision: https://reviews.llvm.org/D79208
This revision adds support to allow named ops to lower to loops.
Linalg.batch_matmul successfully lowers to loops and to LLVM.
In the process, this test also activates linalg to affine loops.
However padded convolutions to not lower to affine.load atm so this revision overrides the type of underlying load / store operation.
Differential Revision: https://reviews.llvm.org/D79135
There are three op conversion modes: Partial, Full, and Analysis. This change modifies the Partial mode to optionally take a set of non-legalizable ops. If this parameter is specified, all ops that are not legalizable (i.e. would cause full conversion to fail) are tracked throughout the partial legalization.
Differential Revision: https://reviews.llvm.org/D78788
This commit marks AllocLikeOp as MemAlloc in StandardOps.
Also in Linalg dependency analysis use memory effect to detect
allocation. This allows the dependency analysis to be more
general and recognize other allocation-like operations.
Differential Revision: https://reviews.llvm.org/D78705
Summary:
The purpose of this is to aid in having code behave differently on
Operations based on their Dialect without caring about the specific
Op. Additionally this is consistent with most other types supporting
isa<> and dyn_cast<>.
A Dialect matches isa<> based only on its namespace and relies on each
namespace being unique.
Differential Revision: https://reviews.llvm.org/D79088
This revision allows masked vector transfers with m-D buffers and n-D vectors to
progressively lower to m-D buffer and 1-D vector transfers.
For a vector.transfer_read, assuming a `memref<(leading_dims) x (major_dims) x (minor_dims) x type>` and a `vector<(minor_dims) x type>` are involved in the transfer, this generates pseudo-IR resembling:
```
if (any_of(%ivs_major + %offsets, <, major_dims)) {
%v = vector_transfer_read(
{%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
%ivs_minor):
memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
vector<(minor_dims) x type>;
} else {
%v = splat(vector<(minor_dims) x type>, %fill)
}
```
Differential Revision: https://reviews.llvm.org/D79062
This range allows for performing many different operations on successor operands, including erasing/adding/setting. This removes the need for the explicit canEraseSuccessorOperand and eraseSuccessorOperand methods.
Differential Revision: https://reviews.llvm.org/D79077
Currently a declaration won't be generated if the method has a default implementation. Meaning that operations that wan't to override the default have to explicitly declare the method in the extraClassDeclarations. This revision adds an optional list parameter to DeclareOpInterfaceMethods to allow for specifying a set of methods that should always have the declarations generated, even if there is a default.
Differential Revision: https://reviews.llvm.org/D79030
This provides a general hash and comparison for checking if two operations are equivalent. This revision also optimizes the handling of result types to take advantage of how result types are stored on the operation.
Differential Revision: https://reviews.llvm.org/D79029
This class allows for mutating an operand range in-place, and provides vector like API for adding/erasing/setting. ODS now uses this class to generate mutable wrappers for named operands, with the name `MutableOperandRange <operand-name>Mutable()`
Differential Revision: https://reviews.llvm.org/D78892
The current implementation uses CrashRecoveryContext, but this only supports recovering in a certain number of cases. This revision adds a signal handler to support even more situations.
This revision was able to properly generate a reproducer for a segfault in the Inliner, that the current recovery couldn't.
Differential Revision: https://reviews.llvm.org/D78315
This revision adds a mode to the crash reproducer generator to attempt to generate a more local reproducer. This will attempt to generate a reproducer right before the offending pass that fails. This is useful for the majority of failures that are specific to a single pass, and situations where some passes in the pipeline are not registered with a specific tool.
Differential Revision: https://reviews.llvm.org/D78314
This moves the threading check to runOnOperation. This produces a much cleaner interface for the adaptor pass, and will allow for the ability to enable/disable threading in a much cleaner way in the future.
Differential Revision: https://reviews.llvm.org/D78313
Makes the relationship and function clearer. Accordingly rename getAttrList to getMutableAttrDict.
Differential Revision: https://reviews.llvm.org/D79125
Enable calling the sort, as expected by getWithSorted, into static member function so that callers can get same sorting behavior.
Differential Revision: https://reviews.llvm.org/D79011
type operands.
The instructions used to convert std.cmpi cannot have i1 types
according to SPIR-V specification. A different set of operations are
specified in the SPIR-V spec for comparing boolean types. Enhance the
StandardToSPIRV lowering to target these instructions when operands to
std.cmpi operation are of i1 type.
Differential Revision: https://reviews.llvm.org/D79049
On certain targets std.subview should be able to take memrefs from non-zero
addrspaces. Improve lowering logic to llvm dialect and amend the tests.
Differential Revision: https://reviews.llvm.org/D79024
Enhance lowering logic and tests so vector.transfer_read and
vector.transfer_write take memrefs on non-zero addrspaces.
Differential Revision: https://reviews.llvm.org/D79023
(A previous version of this, dd2c639c3c, was
reverted.)
Introduce op trait PolyhedralScope for ops to define a new scope for
polyhedral optimization / affine dialect purposes, thus generalizing
such scopes beyond FuncOp. Ops to which this trait is attached will
define a new scope for the consideration of SSA values as valid symbols
for the purposes of polyhedral analysis and optimization. Update methods
that check for dim/symbol validity to work based on this trait.
Differential Revision: https://reviews.llvm.org/D79060
OperationHandle mostly existed to mirror the behavior of ValueHandle.
This has become unnecessary and can be retired.
Differential Revision: https://reviews.llvm.org/D78692
Previously, they would only only verify `isa<DictionaryAttr>` on such attrs
which resulted in crashes down the line from code assuming that the
verifier was doing the more thorough check introduced in this patch.
The key change here is for StructAttr to use
`CPred<"$_self.isa<" # name # ">()">` instead of `isa<DictionaryAttr>`.
To test this, introduce struct attrs to the test dialect. Previously,
StructAttr was only being tested by unittests/, which didn't verify how
StructAttr interacted with ODS.
Differential Revision: https://reviews.llvm.org/D78975
Summary:
When creating an operation with
* `AttrSizedOperandSegments` trait
* Variadic operands of only non-buildable types
* assemblyFormat to automatically generate the parser
the `builder` local variable is used, but never declared.
This adds a fix as well as a test for this case as existing ones use buildable types only.
Reviewers: rriddle, Kayjukh, grosser
Reviewed By: Kayjukh
Subscribers: mehdi_amini, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #mlir, #llvm
Differential Revision: https://reviews.llvm.org/D79004
Summary:
This change results in tests also being changed to prevent dead
affine.load operations from being folded away during rewrites.
Also move AffineStoreOp and AffineLoadOp to an ODS file.
Differential Revision: https://reviews.llvm.org/D78930
As we start defining more complex Ops, we increasingly see the need for
Ops-with-regions to be able to construct Ops within their regions in
their ::build methods. However, these methods only have access to
Builder, and not OpBuilder. Creating a local instance of OpBuilder
inside ::build and using it fails to trigger the operation creation
hooks in derived builders (e.g., ConversionPatternRewriter). In this
case, we risk breaking the logic of the derived builder. At the same
time, OpBuilder::create, which is by far the largest user of ::build
already passes "this" as the first argument, so an OpBuilder instance is
already available.
Update all ::build methods in all Ops in MLIR and Flang to take
"OpBuilder &" instead of "Builder *". Note the change from pointer and
to reference to comply with the common style in MLIR, this also ensures
all other users must change their ::build methods.
Differential Revision: https://reviews.llvm.org/D78713
We have provided a generic buffer assignment transformation ported from
TensorFlow. This generic transformation pass automatically analyzes the values
and their aliases (also in other blocks) and returns the valid positions for
Alloc and Dealloc operations. To find these positions, the algorithm uses the
block Dominator and Post-Dominator analyses. In our proposed algorithm, we have
considered aliasing, liveness, nested regions, branches, conditional branches,
critical edges, and independency to custom block terminators. This
implementation doesn't support block loops. However, we have considered this in
our design. For this purpose, it is only required to have a loop analysis to
insert Alloc and Dealloc operations outside of these loops in some special
cases.
Differential Revision: https://reviews.llvm.org/D78484
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
Introduce op trait `PolyhedralScope` for ops to define a new scope for
polyhedral optimization / affine dialect purposes, thus generalizing
such scopes beyond FuncOp. Ops to which this trait is attached will
define a new scope for the consideration of SSA values as valid symbols
for the purposes of polyhedral analysis and optimization. Update methods
that check for dim/symbol validity to work based on this trait.
Differential Revision: https://reviews.llvm.org/D78863
- Adds a folder for integer division by one with the `divi_signed` and `divi_unsigned` ops.
- Creates tests for scalar and tensor versions of these ops.
- Modifies the test in `parallel-loop-collapsing.mlir` so that it doesn't assume division by one will be in the output.
Differential Revision: https://reviews.llvm.org/D78518
This revision adds support for propagating constants across symbol-based callgraph edges. It uses the existing Call/CallableOpInterfaces to detect the dataflow edges, and propagates constants through arguments and out of returns.
Differential Revision: https://reviews.llvm.org/D78592
This provides a much cleaner interface into Symbols, and allows for users to start injecting op-specific information. For example, derived op can now inject when a symbol can be discarded if use_empty. This would let us drop unused external functions, which generally have public visibility.
This revision also adds a new `extraTraitClassDeclaration` field to ODS OpInterface to allow for injecting declarations into the trait class that gets attached to the operations.
Differential Revision: https://reviews.llvm.org/D78522
Many ops with this trait have `getBody()` and `getBodyBuilder()` methods defined in `extraClassDeclaration` in tablegen. `getBody()` implementation is the same accross all these ops, but `getBodyBuilder()` can return builders with varying insertion points set. In this PR, `getBody()` is moved into `SingleImplicitBlockTerminator` struct and `getBodyBuilder()` is replaced with `OpBuilder::atBlock(End|Terminator)(op.getBody);`.
Differential Revision: https://reviews.llvm.org/D78864
'From' and 'To' should be reversed. And now we must explicitly
call the registration function given that MLIR moved away from
static registration.
Differential Revision: https://reviews.llvm.org/D78934
Instead of using llvm_unreachable to guard against fusing linalg.conv,
reject fusing linalg.conv in isFusableInto.
tileLinalgOpImpl is a templated function now and it can operate on
loop.parellel. So we should avoid calling into getForInductionVarOwner
which always assumes loop.for.
Differential Revision: https://reviews.llvm.org/D78936
Summary: This revision extends the lowering of vector transfers to work with n-D memref and 1-D vector where the permutation map is an identity on the most minor dimensions (1 for now).
Differential Revision: https://reviews.llvm.org/D78925
Summary:
Order classes by purpose and alphabetically to make it slightly easier
to read through the file.
Reviewers: ftynse!
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78914
The latest changes of the Liveness analysis caused a warning related to an
unused variable. This commit solves this warning.
Differential Revision: https://reviews.llvm.org/D78912
Summary:
Previously operations like std.load created methods for obtaining their
effects but did not inherit from the SideEffect interfaces when their
parameters were decorated with the information. The resulting situation
was that passes had no information on the SideEffects of std.load/store
and had to treat them more cautiously. This adds the inheritance
information when creating the methods.
As a side effect, many tests are modified, as they were using std.load
for testing and this oepration would be folded away as part of pattern
rewriting. Tests are modified to use store or to reutn the result of the
std.load.
Reviewers: mravishankar, antiagainst, nicolasvasilache, herhut, aartbik, ftynse!
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78802
Summary:
These have been replaced from attributes to operations gpu.module and
gpu.func respectively.
Differential Revision: https://reviews.llvm.org/D78803
Certain classes of operations, such as FuncOp, are known to never have operands. This revision adds a bit to operation to detect this case and avoid allocating the unnecessary operand storage. This saves 1 word for each instance of these operations.
Differential Revision: https://reviews.llvm.org/D78876
This revision refactors the structure of the operand storage such that there is no additional memory cost for resizable operand lists until it is required. This is done by using two different internal representations for the operand storage:
* One using trailing operands
* One using a dynamically allocated std::vector<OpOperand>
This allows for removing the resizable operand list bit, and will free up APIs from needing to workaround non-resizable operand lists.
Differential Revision: https://reviews.llvm.org/D78875
This revision optimizes resizable operand lists by allocating them in the same location as the trailing operands. This has numerous benefits:
* If the operation has at least one operand at construction time, there is 0 additional memory overhead to the resizable storage.
* There is less pointer arithmetic necessary as the resizable storage is now only used when the operands are dynamically allocated.
Differential Revision: https://reviews.llvm.org/D78854
Summary:
This introduces a new SourceMgr::FindLocForLineAndColumn method that
uses the OffsetCache in SourceMgr::SrcBuffer to do do a constant time
lookup for the line number (once the cache is populated).
Use this method in MLIR's SourceMgrDiagnosticHandler::convertLocToSMLoc,
replacing the O(n) scanning logic. This resolves a long standing TODO
in MLIR, and makes one of my usecases go dramatically faster (which is
currently producing many diagnostics in a 40MB SourceBuffer).
NFC, this is just a performance speedup and cleanup.
Reviewers: rriddle!, ftynse!
Subscribers: hiraditya, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78868
LinalgOps.cpp:232:71: error: specialization of 'template<class GenericOpType> static mlir::LogicalResult {anonymous}::BlockArgsVerifier<GenericOpType>::verify(GenericOpType, mlir::Block&)' in different namespace [-fpermissive]
`addArgument()` is not undoable and should not be used in
ConversionPattern, therefore replacing `splitBlock()` with
`createBlock()`, that creates a block with specified args.
Differential Revision: https://reviews.llvm.org/D78731
Summary: There was a memory corruption issue where the lifespan of the ArrayRef<StringRef> would fail. Directly passing the data will avoid the issue.
Reviewers: rriddle
Reviewed By: rriddle
Subscribers: mehdi_amini, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78850
Summary: Added support for sparse strings elements. This is a follow up from the original DenseStringElements.
Differential Revision: https://reviews.llvm.org/D78844
Fix affine dialect documentation on valid dimensional values: they also
include affine.parallel IVs.
Differential Revision: https://reviews.llvm.org/D78855
Summary:
* Follows the convention of the tablegen-generated dialects.
* Ensures that vague linkage rules place the definitions in the dialect's object files.
* Allows code that uses RTTI to include MLIR headers (compiled without RTTI) without
type_info link errors.
Reviewers: rriddle
Reviewed By: rriddle
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78039
- Implement a first constant fold for shape.shape_of (more ops coming in subsequent patches)
- Implement the right builder interfaces for ShapeType and other types
- Splits shape.constant into shape.const_size and shape.const_shape which plays better with dyn_cast and building vs one polymorphic op.
Also, fix the RUN line in ops.mlir to properly verify round-tripping.
The current implementation of this method performs the replacement directly, and thus doesn't support proper back tracking.
Differential Revision: https://reviews.llvm.org/D78790
The elements of a DictionaryAttr are sorted by name. In many situations, e.g NamedAttributeList, we can guarantee that the elements are sorted on construction and remove the need to perform extra checks. In places with lots of calls to attribute methods, this leads to a good performance improvement.
Differential Revision: https://reviews.llvm.org/D78781
Summary:
This is to specify that ParallelOp does not have side effects on its own
but has the effects of all operations executed in its region.
Differential Revision: https://reviews.llvm.org/D78707
This can help provide a common interface for view-like
ops so that for example Linalg's dependency analysis
can avoid relying on concrete ops.
Differential Revision: https://reviews.llvm.org/D78645
Now both Operation::operand_range and Operation::result_range have
.begin() and .end() for ranged-based for loop and we have
ValueRange for wrapping a single Value. We can remove the SmallVector
materialization!
Differential Revision: https://reviews.llvm.org/D78766
Ensure that `gpu.func` is only used within the dedicated `gpu.module`.
Implement the constraint to the GPU dialect and adopt test cases.
Differential Revision: https://reviews.llvm.org/D78541
Summary:
Implemented a DenseStringsElements attr for handling arrays / tensors of strings. This includes the
necessary logic for parsing and printing the attribute from MLIR's text format.
To store the attribute we perform a single allocation that includes all wrapped string data tightly packed.
This means no padding characters and no null terminators (as they could be present in the string). This
buffer includes a first chunk of data that represents an array of StringRefs, that contain address pointers
into the string data, with the length of each string wrapped. At this point there is no Sparse representation
however strings are not typically represented sparsely.
Differential Revision: https://reviews.llvm.org/D78600
This revision removes the multi use-list to ensure that each result gets its own. This decision was made by doing some extensive benchmarking of programs that actually use multiple results. This results in a size increase of 1-word per result >1, but the common case of 1-result remains unaffected. A side benefit is that 0-result operations now shrink by 1-word.
Differential Revision: https://reviews.llvm.org/D78701
it to fusing different kinds of linalg operations on tensors.
The implementation of fusion on tensor was initially planned for just
GenericOps (and maybe IndexedGenericOps). With addition of
linalg.tensor_reshape, and potentially other such non-structured ops,
refactor the existing implementation to allow easier specification of
fusion between different linalg operations on tensors.
Differential Revision: https://reviews.llvm.org/D78463
367229e100 retired ValueHandle but
mistakenly removed the implementation for `negate` which was not
tested and would result in linking errors.
This revision adds the implementation back and provides a test.
The current Liveness analysis does not support operations with nested regions.
This causes issues when querying liveness information about blocks nested within
operations. Furthermore, the live-in and live-out sets are not computed properly
in these cases.
Differential Revision: https://reviews.llvm.org/D77714
It currently requires that the condition match the shape of the selected value, but this is only really useful for things like masks. This revision allows for the use of i1 to mean that all of the vector/tensor is selected. This also matches the behavior of LLVM select. A benefit of this change is that transformations that want to generate selects, like those on the CFG, don't have to special case vector/tensor. Previously the only way to generate a select from an i1 was to use a splat, but that doesn't support dynamically shaped/unranked tensors.
Differential Revision: https://reviews.llvm.org/D78690
This revision adds support for canonicalizing the following:
```
br ^bb1
^bb1
br ^bbN(...)
br ^bbN(...)
```
Differential Revision: https://reviews.llvm.org/D78683
This revision adds support for canonicalizing the following:
```
cond_br %cond, ^bb1(A, ..., N), ^bb1(A, ..., N)
br ^bb1(A, ..., N)
```
If the operands to the successor are different and the cond_br is the only predecessor, we emit selects for the branch operands.
```
cond_br %cond, ^bb1(A), ^bb1(B)
%select = select %cond, A, B
br ^bb1(%select)
```
Differential Revision: https://reviews.llvm.org/D78682
Summary:
This test is in a different file because it contains a literal NUL
character, which causes various tools to treat it as a binary file.
Hence it is useful to have this test kept in a separate, rarely-changing
file.
Differential Revision: https://reviews.llvm.org/D78689
Summary:
Use a nested symbol to identify the kernel to be invoked by a `LaunchFuncOp` in the GPU dialect.
This replaces the two attributes that were used to identify the kernel module and the kernel within seperately.
Differential Revision: https://reviews.llvm.org/D78551
Summary:
Use the shortcu `kernel` for the `gpu.kernel` attribute of `gpu.func`.
The parser supports this and test cases are easier to read.
Differential Revision: https://reviews.llvm.org/D78542
Summary:
Fix a broken test case in the `invalid.mlir` lit test case.
`expect` was missing its `e`.
Differential Revision: https://reviews.llvm.org/D78540
We also need to lock the LLVMDialect mutex when initializing
LLVM targets or destroying llvm modules concurrently. Added another
scoped lock to that effect.
Differential Revision: https://reviews.llvm.org/D78580
The buffer allocated by a promotion can be subject to other transformations afterward. For example it could be vectorized, in which case it is needed to ensure that this buffer is memory-aligned.
Differential Revision: https://reviews.llvm.org/D78556
This revision is the first in a set of improvements that aim at allowing
more generalized named Linalg op generation from a mathematical
specification.
This revision allows creating a new op and checks that the parser,
printer and verifier are hooked up properly.
This opened up a few design points that will be addressed in the future:
1. A named linalg op has a static region builder instead of an
explicitly parsed region. This is not currently compatible with
assemblyFormat so a custom parser / printer are needed.
2. The convention for structured ops and tensor return values needs to
evolve to allow tensor-land and buffer land specifications to agree
3. ReferenceIndexingMaps and referenceIterators will need to become
static to allow building attributes at parse time.
4. Error messages will be improved once we have 3. and we pretty print
in custom form.
Differential Revision: https://reviews.llvm.org/D78327
Unfortunately FileCheck ignores directives with whitespace between the directive and the colon (`CHECK :` for example), thus most of the directives of this test were ignored.
Differential Revision: https://reviews.llvm.org/D78548
This is possible by adding two new ControlFlowInterface additions:
- A new interface, RegionBranchOpInterface
This interface allows for region holding operations to describe how control flows between regions. This interface initially contains two methods:
* getSuccessorEntryOperands
Returns the operands of this operation used as the entry arguments when entering the region at `index`, which was specified as a successor by `getSuccessorRegions`. when entering. These operands should correspond 1-1 with the successor inputs specified in `getSuccessorRegions`, and may be a subset of the entry arguments for that region.
* getSuccessorRegions
Returns the viable successors of a region, or the possible successor when branching from the parent op. This allows for describing which regions may be executed when entering an operation, and which regions are executed after having executed another region of the parent op. For example, a structured loop operation may always enter into the loop body region. The loop body region may branch back to itself, or exit to the operation.
- A trait, ReturnLike
This trait signals that a terminator exits a region and forwards all of its operands as "exiting" values.
These additions allow for performing more general dataflow analysis in the presence of region holding operations.
Differential Revision: https://reviews.llvm.org/D78447
This revision adds the initial pass for performing SCCP generically in MLIR. SCCP is an algorithm for propagating constants across control flow, and optimistically assumes all values to be constant unless proven otherwise. It currently supports branching control, with support for regions and inter-procedural propagation being added in followups.
Differential Revision: https://reviews.llvm.org/D78397
The promotion transformation is promoting all input and output buffers of the transformed op. The user might want to only promote some of these buffers.
Differential Revision: https://reviews.llvm.org/D78498
The previous code result a mismatch between block argument types and
predecessor successor args when a type conversion was needed in a
multiblock case. It was assuming the replaced result types matched the
region result types.
Also, slighly improve the debug output from the inliner.
Differential Revision: https://reviews.llvm.org/D78415
Summary:
Generate method to generate a DictionaryAttr with attribute values of
derived attribute. If a conversion back from the derived attribute C++
type to Attribute is not defined, then attempting to materialize such an
op's derived attributes would result in runtime failure.
This allows to treat derived attributes and attributes of an op in more
uniform manner where needed. The derived attributes are not added to the
operation but returned as new attribute instead.
Differential Revision: https://reviews.llvm.org/D78302
Fix intra-tile upper bound setting in a scenario where the tile size was
larger than the trip count.
Differential Revision: https://reviews.llvm.org/D78505
memref types with dynamic dimensions do not have a compile-time
known size. They should be mapped to SPIR-V runtime array types.
Differential Revision: https://reviews.llvm.org/D78197
Update misleading line in conclusions. Although the application to IR
objects is stated earlier, the concluding section contradicts it in
isolation.
Differential Revision: https://reviews.llvm.org/D78446
Rename mlir::tileCodeGen -> mlir::tilePerfectlyNested to be consistent.
NFC clean up tiling utility code, drop dead code, better comments.
Expose isPerfectlyNested and reuse.
Differential Revision: https://reviews.llvm.org/D78423
Summary:
Workgroup size is written into the kernel. So to properly modelling
vulkan launch, we have to skip local workgroup size for vulkan launch
call op.
Differential Revision: https://reviews.llvm.org/D78307
Summary:
The tests referred to in Chapter 3 of the tutorial were missing from the tutorial test
directory; this adds those missing tests. This also cleans up some stale directory paths and code
snippets used throughout the tutorial.
Differential Revision: https://reviews.llvm.org/D76809
Summary:
The tests referred to in Chapter 3 of the tutorial were missing from the tutorial test
directory; this adds those missing tests. This also cleans up some stale directory paths and code
snippets used throughout the tutorial.
Differential Revision: https://reviews.llvm.org/D76809
Summary:
The tests referred to in Chapter 3 of the tutorial were missing from the tutorial test
directory; this adds those missing tests. This also cleans up some stale directory paths and code
snippets used throughout the tutorial.
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, aartbik, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76809
Summary:
Rather than having a full, recursive, lowering of vector.broadcast
to LLVM IR, it is much more elegant to have a progressive lowering
of each vector.broadcast into a lower dimensional vector.broadcast,
until only elementary vector operations remain. This results
in more elegant, step-wise code, that is easier to understand.
Also makes some optimizations in the generated code.
Reviewers: nicolasvasilache, mehdi_amini, andydavis1, grosul1
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78071
add_llvm_library() sometimes needs access to the dependencies in order to
generate new targets. Using DEPENDS allows this.
Differential Revision: https://reviews.llvm.org/D78321
Libraries declared as target_link_libraries() do not also need
to be declared as dependencies using add_dependencies().
Differential Revision: https://reviews.llvm.org/D78320
MLIR supports operations with resizable operand lists, but this property must
be indicated during the construction of such operations. It can be done
programmatically by calling a function on OperationState. Introduce an
ODS-internal trait `ResizableOperandList` to indicate such operations are use
it when generating the bodies of various `build` functions as well as the
`parse` function when the declarative assembly format is used.
Differential Revision: https://reviews.llvm.org/D78292
There were some unused CMakeFiles for Affine/IR and Affine/EDSC.
This change builds separate MLIRAffineOps and MLIRAffineEDSC libraries
using those CMakeFiles. This combination replaces the old MLIRAffine
library.
Differential Revision: https://reviews.llvm.org/D78317
This will fix a failure when using a linker sensitive to the order in
which libraries are passed.
Differential Revision: https://reviews.llvm.org/D78303
The function attribute in generic ops is not paying for itself.
A region is the more standardized way of specifying a custom computation.
If needed this region can call a function directly.
This is deemed more natural than managing a dedicated function attribute.
This also simplifies named ops generation by trimming unnecessary complexity.
Differential Revision: https://reviews.llvm.org/D78266
OpBase.td defined attributes kind for all integer types expect index. This
commit fixes that by adding an IndexAttr attribute kind. Update the
respective tests.
Differential Revision: https://reviews.llvm.org/D78195
This change makes the ModuleTranslation threadsafe by locking on the
LLVMContext. Furthermore, we now clone the llvm module into a new
context when compiling to PTX similar to what the OrcJit does.
Differential Revision: https://reviews.llvm.org/D78207
Summary:
OpBase.td defined attributes kind for all integer types expect index. This
commit fixes that by adding an IndexAttr attribute kind.
Differential Revision: https://reviews.llvm.org/D78195
This avoids asan failures as more calls may be added during inlining, invalidating the reference.
Differential Revision: https://reviews.llvm.org/D78258
Summary:
Modified AffineMap::get to remove support for the overload which allowed
an ArrayRef of AffineExpr but no context (and gathered the context from a
presumed first entry, resulting in bugs when there were 0 results).
Instead, we support only a ArrayRef and a context, and a version which
takes a single AffineExpr.
Additionally, removed some now needless case logic which previously
special cased which call to AffineMap::get to use.
Reviewers: flaub, bondhugula, rriddle!, nicolasvasilache, ftynse, ulysseB, mravishankar, antiagainst, aartbik
Subscribers: mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78226
This revision introduces a utility to unswitch affine.for/parallel loops
by hoisting affine.if operations past surrounding affine.for/parallel.
The hoisting works for both perfect/imperfect nests and in the presence
of else blocks. The hoisting is currently to as outermost a level as
possible. Uses a test pass to test the utility.
Add convenience method Operation::getParentWithTrait<Trait>.
Depends on D77487.
Differential Revision: https://reviews.llvm.org/D77870
Similarly to actual LLVM IR, and to `llvm.mlir.func`, allow the custom syntax
of `llvm.mlir.global` to omit the linkage keyword. If omitted, the linkage is
assumed to be external. This makes the modeling of globals in the LLVM dialect
more consistent, both within the dialect and with LLVM IR.
Differential Revision: https://reviews.llvm.org/D78096
Introduce mlir::applyOpPatternsAndFold which applies patterns as well as
any folding only on a specified op (in contrast to
applyPatternsAndFoldGreedily which applies patterns only on the regions
of an op isolated from above). The caller is made aware of the op being
folded away or erased.
Depends on D77485.
Differential Revision: https://reviews.llvm.org/D77487
Summary:
This revision adds two utilities currently present in MLIR to LLVM StringExtras:
* convertToSnakeFromCamelCase
Convert a string from a camel case naming scheme, to a snake case scheme
* convertToCamelFromSnakeCase
Convert a string from a snake case naming scheme, to a camel case scheme
Differential Revision: https://reviews.llvm.org/D78167
Integer type in Std dialect is signless so we should be checking
for signless integer type instead of signed integer type in EDSC.
Differential Revision: https://reviews.llvm.org/D78144
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionality. Each `Case<T>` takes a callable to be invoked if the root value isa<T>, the callable is invoked with the result of dyn_cast<T>() as a parameter.
Differential Revision: https://reviews.llvm.org/D78070
These have proved incredibly useful for interleaving values between a range w.r.t to streams. After this revision, the mlir/Support/STLExtras.h is empty. A followup revision will remove it from the tree.
Differential Revision: https://reviews.llvm.org/D78067
This revision moves the various range utilities present in MLIR to LLVM to enable greater reuse. This revision moves the following utilities:
* indexed_accessor_*
This is set of utility iterator/range base classes that allow for building a range class where the iterators are represented by an object+index pair.
* make_second_range
Given a range of pairs, returns a range iterating over the `second` elements.
* hasSingleElement
Returns if the given range has 1 element. size() == 1 checks end up being very common, but size() is not always O(1) (e.g., ilist). This method provides O(1) checks for those cases.
Differential Revision: https://reviews.llvm.org/D78064
This revision moves several type_trait utilities from MLIR into LLVM. Namely, this revision adds:
is_detected - This matches the experimental std::is_detected
is_invocable - This matches the c++17 std::is_invocable
function_traits - A utility traits class for getting the argument and result types of a callable type
Differential Revision: https://reviews.llvm.org/D78059
This revision adds a DenseMapInfo overload for std::tuples whose elements all have a DenseMapInfo. The implementation is similar to that of std::pair, and has been used within MLIR for over a year.
Differential Revision: https://reviews.llvm.org/D78057
Summary:
Also,
- add IndexTensor to OpBase.td
- fix typo in the op name. It was mistakenly `to_tensor` instead of
`to_extent_tensor`.
Differential Revision: https://reviews.llvm.org/D78149
The inversePermutation method returns a null map on failure. Update
uses of this method within Linalg to handle this. In LinalgToLoops the
null return value was used to emit scalar code. Modify that to return
failure, and emit scalar implementation when affine map is "empty",
i.e. 1 dims, 0 symbols and no result exprs.
Differential Revision: https://reviews.llvm.org/D77964
Summary:
This operation occurs during collapseParallelLoops, so we constant fold
them also to allow more situations of determining a loop invariant upper
bound when lowering to the GPU dialect from the Loop dialect.
Differential Revision: https://reviews.llvm.org/D77723
This makes no impact on the test cases because affine-data-copy-generate
runs whole function canonicalization at its end; however, the latter
will be removed in a pending revision. It is thus useful to clean up
these affine.applys right here, and eventually, not even generate
these (when the right API to compose by construction is in place).
Differential Revision: https://reviews.llvm.org/D78055
Summary: Functional.h contains many different methods that have a direct, and more efficient, equivalent in LLVM. This revision replaces all usages with the LLVM equivalent, and removes the header. This is part of larger cleanup, pr45513, merging MLIR support facilities into LLVM.
Differential Revision: https://reviews.llvm.org/D78053
This change is NFC since the facility to tile and generate
loop.parallel loops already exists in Linalg.
Differential Revision: https://reviews.llvm.org/D77965
The invertPermutation method does not return a nullptr anymore, but
rather returns an empty map for the scalar case. Update the check in
LinalgToLoops to reflect this.
Also add test case for generating scalar code.
The outer parallel loops of a linalg operation is lowered to
loop.parallel, with the other loops lowered to loop.for. This gets the
lowering to loop.parallel on par with the loop.for lowering. In future
the reduction loop could also be lowered to loop.parallel.
Also add a utility function that returns the loops that are
created.
Differential Revision: https://reviews.llvm.org/D77678
NFC clean up for simplify-affine-structures test cases. Rename sets
better; avoid suffix numbers; move outlined definitions close to use.
This is in preparation for other functionality updates.
Differential Revision: https://reviews.llvm.org/D78017
Summary: This revision adds blurbs of documentation to various different passes, namely: Canonicalizer, CSE, LocationSnapshot, StripDebugInfo, and SymbolDCE.
Differential Revision: https://reviews.llvm.org/D78007
This commit added stride support in runtime array types. It also
adjusted the assembly form for the stride from `[N]` to `stride=N`.
This makes the IR more readable, especially for the cases where
one mix array types and struct types.
Differential Revision: https://reviews.llvm.org/D78034
Summary:
This revision adds generation of two utility methods during EnumGen:
```
llvm::Optional<EnumType> symbolizeEnum<EnumType>(llvm::StringRef)
<stringifyResult> stringifyEnum(EnumType);
```
This provides a generic interface for stringifying/symbolizing any enum that can be used in a template environment.
Differential Revision: https://reviews.llvm.org/D77937
Define MLIR_MAIN_INCLUDE_DIR, as it was not set anywhere.
Set MLIR_MAIN_SRC_DIR to the actual "source directory", and not the
"include directory" (as currently set).
Differential Revision: https://reviews.llvm.org/D77943
Summary: This revision makes the registration of command line options for these two files manual with `registerMLIRContextCLOptions` and `registerAsmPrinterCLOptions` methods. This removes the last remaining static constructors within lib/.
Differential Revision: https://reviews.llvm.org/D77960
Summary: std::function has a notoriously large amount of malloc traffic, whereas function_ref is a cheaper and more efficient alternative.
Differential Revision: https://reviews.llvm.org/D77959
A few libraries which are also Dialect libraries where independently
in the link line for mlir-opt. Remove them.
Differential Revision: https://reviews.llvm.org/D77927
Summary:
Identifier doesn't maintain a length, so every time strref() is called,
it does a strlen. In the case of comparisons, this isn't necessary:
there is no need to scan a string to get its length, then rescan it to
do the comparison. Just done one comparison.
This also moves some assertions in Identifier::get as another
microoptimization for 'assertions enabled' modes.
Reviewers: rriddle!
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77958
Summary:
This revision performs a few refactorings on the main docs folder. Namely it:
* Adds a new Rationale/ folder to contain various rationale documents
* Moves several "getting started" documents to the Tutorials/ folder
* Cleans up the titles of various documents
Differential Revision: https://reviews.llvm.org/D77934
OperatioFolder::tryToFold performs both true folding and in a few
instances in-place updates through op rewrites. In the latter case, we
should still be applying the supplied pattern rewrites in the same
iteration; however this wasn't the case since tryToFold returned
success() for both true folding and in-place updates, and the patterns
for the in-place updated ops were being applied only in the next
iteration of the driver's outer loop. This fix would make it converge
faster.
Differential Revision: https://reviews.llvm.org/D77485
Summary: ClassID is a bit janky right now as it involves passing a magic pointer around. This revision hides the internal implementation mechanism within a new class TypeID. This class is a value-typed wrapper around the original ClassID implementation.
Differential Revision: https://reviews.llvm.org/D77768
Summary: This hook allows for passes to specify the command line argument without the need for registration. More concretely this will allow for generating pass crash reproducers without needing to have the passes registered. This should remove the need for production tools to register passes, leaving that solely to development tools like mlir-opt.
Differential Revision: https://reviews.llvm.org/D77907
Summary: With users registering their own dependencies, duplicate pass registration becomes more and more common. This revision relaxes that pass registration be unique. This is safe to assume given that we key on the passID, which is guaranteed to be unique per pass class.
Differential Revision: https://reviews.llvm.org/D77909
Summary: This revision adds support for specifying operands or results as "optional". This is a special case of variadic where the number of elements is either 0 or 1. Operands and results of this kind will have accessors generated using Value instead of the range types, making it more natural to interface with.
Differential Revision: https://reviews.llvm.org/D77863
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: rriddle, efriedma, sdesmalen
Reviewed By: sdesmalen
Subscribers: frgossen, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77258
Summary: This avoids adding any additional global constructors, like cl::opt. There is a temporary exception on IR/, which has a few cl::opts that require a bit of plumbing to remove.
Differential Revision: https://reviews.llvm.org/D77824
Summary:
The string in the location is used to provide metadata for the fused location
or create a NamedLoc. This allows tagging individual locations to convey
additional rewrite information.
Differential Revision: https://reviews.llvm.org/D77840
Summary:
This revision adds a tool that generates the ODS and C++ implementation for "named" Linalg ops according to the [RFC discussion](https://llvm.discourse.group/t/rfc-declarative-named-ops-in-the-linalg-dialect/745).
While the mechanisms and language aspects are by no means set in stone, this revision allows connecting the pieces end-to-end from a mathematical-like specification.
Some implementation details and short-term decisions taken for the purpose of bootstrapping and that are not set in stone include:
1. using a "[Tensor Comprehension](https://arxiv.org/abs/1802.04730)-inspired" syntax
2. implicit and eager discovery of dims and symbols when parsing
3. using EDSC ops to specify the computation (e.g. std_addf, std_mul_f, ...)
A followup revision will connect this tool to tablegen mechanisms and allow the emission of named Linalg ops that automatically lower to various loop forms and run end to end.
For the following "Tensor Comprehension-inspired" string:
```
def batch_matmul(A: f32(Batch, M, K), B: f32(K, N)) -> (C: f32(Batch, M, N)) {
C(b, m, n) = std_addf<k>(std_mulf(A(b, m, k), B(k, n)));
}
```
With -gen-ods-decl=1, this emits (modulo formatting):
```
def batch_matmulOp : LinalgNamedStructured_Op<"batch_matmul", [
NInputs<2>,
NOutputs<1>,
NamedStructuredOpTraits]> {
let arguments = (ins Variadic<LinalgOperand>:$views);
let results = (outs Variadic<AnyRankedTensor>:$output_tensors);
let extraClassDeclaration = [{
llvm::Optional<SmallVector<StringRef, 8>> referenceIterators();
llvm::Optional<SmallVector<AffineMap, 8>> referenceIndexingMaps();
void regionBuilder(ArrayRef<BlockArgument> args);
}];
let hasFolder = 1;
}
```
With -gen-ods-impl, this emits (modulo formatting):
```
llvm::Optional<SmallVector<StringRef, 8>> batch_matmul::referenceIterators() {
return SmallVector<StringRef, 8>{ getParallelIteratorTypeName(),
getParallelIteratorTypeName(),
getParallelIteratorTypeName(),
getReductionIteratorTypeName() };
}
llvm::Optional<SmallVector<AffineMap, 8>> batch_matmul::referenceIndexingMaps()
{
MLIRContext *context = getContext();
AffineExpr d0, d1, d2, d3;
bindDims(context, d0, d1, d2, d3);
return SmallVector<AffineMap, 8>{
AffineMap::get(4, 0, {d0, d1, d3}),
AffineMap::get(4, 0, {d3, d2}),
AffineMap::get(4, 0, {d0, d1, d2}) };
}
void batch_matmul::regionBuilder(ArrayRef<BlockArgument> args) {
using namespace edsc;
using namespace intrinsics;
ValueHandle _0(args[0]), _1(args[1]), _2(args[2]);
ValueHandle _4 = std_mulf(_0, _1);
ValueHandle _5 = std_addf(_2, _4);
(linalg_yield(ValueRange{ _5 }));
}
```
Differential Revision: https://reviews.llvm.org/D77067
This patch adds support for taskwait and taskyield operations in OpenMP dialect and translation of the these constructs to LLVM IR. The OpenMP IRBuilder is used for this translation.
The patch includes code changes and a testcase modifications.
Differential Revision: https://reviews.llvm.org/D77634
Rename mlir::applyPatternsGreedily -> applyPatternsAndFoldGreedily. The
new name is a more accurate description of the method - it performs
both, application of the specified patterns and folding of all ops in
the op's region irrespective of whether any patterns have been supplied.
Differential Revision: https://reviews.llvm.org/D77478
Introduce a new operation property / trait (AutomaticAllocationScope)
for operations with regions that define a new scope for automatic allocations;
such allocations (typically realized on stack) are automatically freed when
control leaves such ops' regions. std.alloca's are freed at the closest
surrounding op that has this trait. All FunctionLike operations should normally
have this trait.
Differential Revision: https://reviews.llvm.org/D77787
Summary:
LLVM matrix intrinsics recently introduced an option to support row-major mode.
This matches the MLIR vector model, this revision switches to row-major.
A corner case related to degenerate sizes was also fixed upstream.
This revision removes the guard against this corner case.
A bug was uncovered on the output vector construction which this revision also fixes.
Lastly, this has been tested on a small size and benchmarked independently: no visible performance regression is observed.
In the future, when matrix intrinsics support per op attribute, we can more aggressively translate to that and avoid inserting MLIR-level transposes.
This has been tested independently to work on small matrices.
Differential Revision: https://reviews.llvm.org/D77761
Summary:
This revision adds support to lower 1-D vector transfers to LLVM.
A mask of the vector length is created that compares the base offset + linear index to the dim of the vector.
In each position where this does not overflow (i.e. offset + vector index < dim), the mask is set to 1.
A notable fact is that the lowering uses llvm.dialect_cast to allow writing code in the simplest form by targeting the simplest mix of vector and LLVM dialects and
letting other conversions kick in.
Differential Revision: https://reviews.llvm.org/D77703
The "cblas" lib under mlir/test is meant as a simple integration demonstration.
However it is installed and ends up conflicting with external projects who want to
define the real cblas.
Rename to avoid conflicts.
Differential revision: https://reviews.llvm.org/D76615
Summary: Some pattern rewriters, like dialect conversion, prohibit the unbounded recursion(or reapplication) of patterns on generated IR. Most patterns are not written with recursive application in mind, so will generally explode the stack if uncaught. This revision adds a hook to RewritePattern, `hasBoundedRewriteRecursion`, to signal that the pattern can safely be applied to the generated IR of a previous application of the same pattern. This allows for establishing a contract between the pattern and rewriter that the pattern knows and can handle the potential recursive application.
Differential Revision: https://reviews.llvm.org/D77782
Minor fixes and cleanup for ShapedType accessors, use
ShapedType::kDynamicSize, add ShapedType::isDynamicDim.
Differential Revision: https://reviews.llvm.org/D77710
Summary: This avoids the need for having global static initializers within the JITRunner support library, and only constructs the options when the runner is invoked.
Differential Revision: https://reviews.llvm.org/D77760
Summary: ClassID is used as a type id and must be unique in the face of shared libraries to ensure correctness. This fixes failures related to BUILD_SHARED_LIBs on macos.
Differential Revision: https://reviews.llvm.org/D77764
This revision builds a simple "fused pass" consisting of 2 levels of tiling, memory promotion and vectorization using linalg transformations written as composable pattern rewrites.
Summary: Pass options are a better choice for various reasons and avoid the need for static constructors.
Differential Revision: https://reviews.llvm.org/D77707
Summary:
Update ShapeCastOp folder to use producer-consumer value forwarding.
Support is added for tracking sub-vectors through trivial shape cast operations,
where the sub-vector shape is preserved across shape cast operations and only
leading ones are added or removed.
Support is preserved for cancelling shape cast operations.
One unit test is added and two are updated.
Reviewers: aartbik, nicolasvasilache
Reviewed By: aartbik, nicolasvasilache
Subscribers: frgossen, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77253
820c420d4e1c630b5ead285917c6ecdd2f5092ad did not really fix all build
issues by D77528. This gets rid of two unnecessary 'using' declarations.
Differential Revision: https://reviews.llvm.org/D77726
Support to recognize and deal with aligned_alloc was recently added to
LLVM's TLI/MemoryBuiltins and its various optimization passes. This
revision adds support for generation of aligned_alloc's when lowering
AllocOp from std to LLVM. Setting 'use-aligned_alloc=1' will lead to
aligned_alloc being used for all heap allocations. An alignment and size
that works with the constraints of aligned_alloc is chosen.
Using aligned_alloc is preferable to "using malloc and adjusting the
allocated pointer to align for indexing" because the pointer access
arithmetic done for the latter only makes it harder for LLVM passes to
deal with for analysis, optimization, attribute deduction, and rewrites.
Differential Revision: https://reviews.llvm.org/D77528
This revision removes the reliance of Promotion on `linalg.slice` which is meant
for the rank-reducing case.
Differential Revision: https://reviews.llvm.org/D77676
Invoke `keep()` on the output file of `mlir-opt` in case the invocation of `MlirOptMain` was successful, to make sure the output file is not deleted on exit from `mlir-opt`.
Fixes a similar problem in `standalone-opt` from the example for an out-of-tree, standalone MLIR dialect.
This revision also adds a missing parameter to the invocation of `MlirOptMain` in `standalone-opt`.
Differential Revision: https://reviews.llvm.org/D77643
Summary: 'it' may get invalidated when recursing into optional groups. This revision refactors the inner loop to avoid the need to compare the iterator after invalidation.
Differential Revision: https://reviews.llvm.org/D77686
Error messages for the custom assembly format are difficult to understand
because there are no line numbers. This happens because the assembly format
is parsed as a standalone line, separate from it's parent file, with no useful
location information. Fixing this properly probably requires quite a bit
of invasive plumbing through the SourceMgr, similar to how included files
are handled
This proposal is a less invasive short term solution. When generating an
error message we generate an additional note which at least properly describes
the operation definition the error occured in, if not the actual line number
of the assemblyFormat definition.
A typical message is like:
error: type of operand #0, named 'operand', is not buildable and a buildable type cannot be inferred
$operand type($result) attr-dict
^
/src/llvm-project/mlir/test/mlir-tblgen/op-format-spec.td:296:1: note: in custom assembly format for this operation
def ZCoverageInvalidC : TestFormat_Op<"variable_invalid_c", [{
^
note: suggest adding a type constraint to the operation or adding a 'type($operand)' directive to the custom assembly format
$operand type($result) attr-dict
^
Differential Revision: https://reviews.llvm.org/D77488
The messages are somewhat cryptic, since they are not complete sentences,
include lots of ambiguous words, like 'format' which are hard to parse,
and include names from the users code which may, or may not make sense in
the context of the message. Start to clean this up and provide some
guidance for fixes.
Also, add a test for one of the messages which didn't have a test at all.
Differential Revision: https://reviews.llvm.org/D77449
Summary:
This is much cleaner, and fits the same structure as many other tablegen backends. This was not done originally as the CRTP in the pass classes made it overly verbose/complex.
Differential Revision: https://reviews.llvm.org/D77367
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.
Differential Revision: https://reviews.llvm.org/D77350
ModulePass doesn't provide any special utilities and thus doesn't give enough benefit to warrant a special pass class. This revision replaces all usages with the more general OperationPass.
Differential Revision: https://reviews.llvm.org/D77339
Summary:
Add directive to indicate the location to give to op being created. This
directive is optional and if unused the location will still be the fused
location of all source operations.
Currently this directive only works with other op locations, reusing an
existing op location or a fusion of op locations. But doesn't yet support
supplying metadata for the FusedLoc.
Based off initial revision by antiagainst@ and effectively mirrors GlobalIsel
debug_locations directive.
Differential Revision: https://reviews.llvm.org/D77649
Summary:
* Removal of FxpMathOps was discussed on the mailing list.
* Will send a courtesy note about also removing the Quantizer (which had some dependencies on FxpMathOps).
* These were only ever used for experimental purposes and we know how to get them back from history as needed.
* There is a new proposal for more generalized quantization tooling, so moving these older experiments out of the way helps clean things up.
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77479
Summary: Diagnostics may be cached in the parallel diagnostic handler to preserve proper ordering. Storing the Operation as a DiagnosticArgument is problematic as the operation may be erased or changed before it finally gets printed.
Differential Revision: https://reviews.llvm.org/D77675
If we have two back-to-back loops with block arguments, the OpPhi
instructions generated for the second loop's block arguments should
have use the merge block of the first SPIR-V loop structure as
their incoming parent block.
Differential Revision: https://reviews.llvm.org/D77543
Introduce the alloca op for stack memory allocation. When converting to the
LLVM dialect, this is lowered to an llvm.alloca. Refactor the std to
llvm conversion for alloc op to reuse with alloca. Drop useAlloca option
with alloc op lowering.
Differential Revision: https://reviews.llvm.org/D76602
Fix point-wise copy generation to work with bounds that have max/min.
Change structure of copy loop nest to use absolute loop indices and
subtracting base from the indexes of the fast buffers. Update supporting
utilities: Fix FlatAffineConstraints::getLowerAndUpperBound to look at
equalities as well and for a missing division. Update unionBoundingBox
to not discard common constraints (leads to a tighter system). Update
MemRefRegion::getConstantBoundingSizeAndShape to add memref dimension
constraints. Run removeTrivialRedundancy at the end of
MemRefRegion::compute. Run single iteration loop promotion and
load/store canonicalization after affine data copy (in its test pass as
well).
Differential Revision: https://reviews.llvm.org/D77320
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
The rewriter generates a call to build that is not handled by opdef generator
and so will fail to compile. Also if this is a root node being replaced
(depth 0) then using the more generic build method in the rewrite suffices.
Summary: This revision updates the value numbering when printing to number from the next parent operation that is isolated from above. This is the highest level to number from that still ensures thread-safety. This revision also changes the behavior of Operator::operator<< to use local scope to avoid thread races when numbering operations.
Differential Revision: https://reviews.llvm.org/D77525
Summary:
This revision adds a tensor_reshape operation that operates on tensors.
In the tensor world the constraints are less stringent and we can allow more
arbitrary dynamic reshapes, as long as they are contractions.
The expansion of a dynamic dimension into multiple dynamic dimensions is under-specified and is punted on for now.
Differential Revision: https://reviews.llvm.org/D77360
This will fix the case:
$ toyc -emit=jit test.toy
$ cat test.toy
def main() {
var a = 1;
print(a);
}
Without this patch it would trigger an assertion.
Differential Revision: https://reviews.llvm.org/D77464
The current return type sometimes leads to code like
to_vector<2>(ValueRange(loop.getInductionIvs())). It would be nice to
shorten it. Users who need access to Block::BlockArgListType (if there
are any), can always call getBody()->getArguments(); if needed.
Also remove getNumInductionVars(), since there is getNumLoops().
Differential Revision: https://reviews.llvm.org/D77526
Summary:
This revision performs several cleanups on the translation infra:
* Removes the TranslateCLParser library and consolidates into Translation
- This was a weird library that existed in Support, and didn't really justify being a standalone library.
* Cleans up the internal registration and consolidates all of the translation functions within one registry.
Differential Revision: https://reviews.llvm.org/D77514
Summary: Blocks are numbered locally within a region, so numbering above the parent region is unnecessary.
Differential Revision: https://reviews.llvm.org/D77510
Summary: This updates the canonicalization documentation, and properly documents the different ways of canonicalizing operations.
Differential Revision: https://reviews.llvm.org/D77490
Summary:
This revision adds a section to WritingAPass to document the declarative specification, and how to use it.
Differential Revision: https://reviews.llvm.org/D77102
Even if this indicates in general a problem at call sites, the printer
is used for debugging and avoiding crashing is friendlier for example
when used in diagnostics or other printer.
Differential Revision: https://reviews.llvm.org/D77481
Add a pattern rewriter utility to erase blocks (while notifying the
pattern rewriting driver of the erased ops). Use this to remove trivial
else blocks in affine.if ops.
Differential Revision: https://reviews.llvm.org/D77083
Removing dead ops should make the outer loop of the pattern rewriting
driver run again. Although its operands are added to the worklist, if no
changes happenned to them or remaining ops in the worklist, the driver
wouldn't run once again - but it should be.
Differential Revision: https://reviews.llvm.org/D77483
The ForOp::build ensures that there is a block terminator which is great for
the default use case when there are no iter_args and loop.for returns no
results. In non-zero results case we always need to call replaceOpWithNewOp
which is not the nicest thing in the world. We can stop inserting YieldOp when
iter_args is non-empty. IfOp::build already behaves similarly.
Summary: This revision adds support for marking the last region as variadic in the ODS region list with the VariadicRegion directive.
Differential Revision: https://reviews.llvm.org/D77455
This adds a minimal out-of-tree dialect template which can be used to start work on a standalone dialect implementation without having to integrate it in the main LLVM tree.
It mostly sets up the directory structure and provides CMakeLists.txt files to build a dialect library, an opt-like tool to operate on that dialect as well as tests. It could be expanded in the future to add examples of more user-defined operations, types, attributes, generated enums, transforms, etc. and linked to a tutorial.
Differential Revision: https://reviews.llvm.org/D77133
The implementation of shape inference in the toy tutorial did not conform to the correct algorithmic description.
The result was only correct because all operations appear to be processed in sequence.
Differential Revision: https://reviews.llvm.org/D77382
Summary: The attribute grammar includes an optional trailing colon type, so for attributes without a constant buildable type this will generally lead to unexpected and undesired behavior. Given that, it's better to just error out on these cases.
Differential Revision: https://reviews.llvm.org/D77293
Summary: It is a very common user trap to think that the location printed along with the diagnostic is the same as the current operation that caused the error. This revision changes the behavior to always print the current operation, except for when diagnostics are being verified. This is achieved by moving the command line flags in IR/ to be options on the MLIRContext.
Differential Revision: https://reviews.llvm.org/D77095
Summary:
A recent extension allowed the `loop.if` operation to return results yielded by
its regions. However, such operations could not be lowered to a CFG of standard
operations because it would have required to modify the argument list of a
block, which is not allowed in a conversion pattern. Now that the conversion
infrastructure supports block creation, use it to create a block with an
argument list that dominates the operations following the `loop.if` and forward
the results as arguments of this block.
Depends On D77416
Differential Revision: https://reviews.llvm.org/D77418