shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
sequence - target independent framework
When the DAGcombiner selects instruction sequences
it could increase the critical path or resource len.
For example, on arm64 there are multiply-accumulate instructions (madd,
msub). If e.g. the equivalent multiply-add sequence is not on the
crictial path it makes sense to select it instead of the combined,
single accumulate instruction (madd/msub). The reason is that the
conversion from add+mul to the madd could lengthen the critical path
by the latency of the multiply.
But the DAGCombiner would always combine and select the madd/msub
instruction.
This patch uses machine trace metrics to estimate critical path length
and resource length of an original instruction sequence vs a combined
instruction sequence and picks the faster code based on its estimates.
This patch only commits the target independent framework that evaluates
and selects code sequences. The machine instruction combiner is turned
off for all targets and expected to evolve over time by gradually
handling DAGCombiner pattern in the target specific code.
This framework lays the groundwork for fixing
rdar://16319955
llvm-svn: 214666
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
For targets that have instruction itineraries this means no change. Targets
that move over to the new schedule model will use be able the new schedule
module for instruction latencies in the if-converter (the logic is such that if
there is no itineary we will use the new sched model for the latencies).
Before, we queried "TTI->getInstructionLatency()" for the instruction latency
and the extra prediction cost. Now, we query the TargetSchedule abstraction for
the instruction latency and TargetInstrInfo for the extra predictation cost. The
TargetSchedule abstraction will internally call "TTI->getInstructionLatency" if
an itinerary exists, otherwise it will use the new schedule model.
ATTENTION: Out of tree targets!
(I will also send out an email later to LLVMDev)
This means, if your target implements
unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost);
and returns a value for "PredCost", you now also need to implement
unsigned getPredictationCost(const MachineInstr *MI);
(if your target uses the IfConversion.cpp pass)
radar://15077010
llvm-svn: 191671
Ideally, the machinel model is added at the time the instructions are
defined. But many instructions in X86InstrSSE.td still need a model.
Without this workaround the scheduler asserts because x86 already has
itinerary classes for these instructions, indicating they should be
modeled by the scheduler. Since we use the new machine model for other
instructions, it expects a new machine model for these too.
llvm-svn: 191391
Replace the ill-defined MinLatency and ILPWindow properties with
with straightforward buffer sizes:
MCSchedMode::MicroOpBufferSize
MCProcResourceDesc::BufferSize
These can be used to more precisely model instruction execution if desired.
Disabled some misched tests temporarily. They'll be reenabled in a few commits.
llvm-svn: 184032
Implicit defs are not currently positional and not modeled by the
per-operand machine model. Unfortunately, we treat defs that are part
of the architectural instruction description, like flags, the same as
other implicit defs. Really, they should have a fixed MachineInstr
layout and probably shouldn't be "implicit" at all.
For now, we'll change the default latency to be the max operand
latency. That will give flag setting operands full latency for x86
folded loads. Other kinds of "fake" implicit defs don't occur prior to
regalloc anyway, and we would like them to go away postRegAlloc as
well.
llvm-svn: 177227
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Expose the processor resources defined by the machine model to the
scheduler and other clients through the TargetSchedule interface.
Normalize each resource count with respect to other kinds of
resources. This allows scheduling heuristics to balance resources
against other kinds of resources and latency.
llvm-svn: 167444
Allows the new machine model to be used for NumMicroOps and OutputLatency.
Allows the HazardRecognizer to be disabled along with itineraries.
llvm-svn: 165603