Some ARM FPUs only have 16 double-precision registers, rather than the
normal 32. LLVM represents this with the D16 target feature. This is
currently used by CodeGen to avoid using high registers when they are
not available, but the assembler and disassembler do not.
I fix this in the assmebler and disassembler rather than the
InstrInfo.td files, as the latter would require a large number of
changes everywhere one of the floating-point instructions is referenced
in the backend. This solution is similar to the one used for
co-processor numbers and MSR masks.
llvm-svn: 221341
This prevents us from silently accepting invalid instructions on (for example)
Cortex-M4 with just single-precision VFP support.
No tests for the extra Pat Requires because they're essentially assertions: the
affected code should have been lowered to libcalls before ISel.
rdar://problem/15302004
llvm-svn: 193354
The fused multiply instructions were added in VFPv4 but are still NEON
instructions, in particular they shouldn't be available on a Cortex-M4 not
matter how floaty it is.
llvm-svn: 193342
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
llvm-svn: 154480
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
llvm-svn: 154456