This change aims to unify and correct our logic for when we need to allow for
the possibility of the linker adding a TOC restoration instruction after a
call. This comes up in two contexts:
1. When determining tail-call eligibility. If we make a tail call (i.e.
directly branch to a function) then there is no place for the linker to add
a TOC restoration.
2. When determining when we need to add a nop instruction after a call.
Likewise, if there is a possibility that the linker might need to add a
TOC restoration after a call, then we need to put a nop after the call
(the bl instruction).
First problem: We were using similar, but different, logic to decide (1) and
(2). This is just wrong. Both the resideInSameModule function (used when
determining tail-call eligibility) and the isLocalCall function (used when
deciding if the post-call nop is needed) were supposed to be determining the
same underlying fact (i.e. might a TOC restoration be needed after the call).
The same logic should be used in both places.
Second problem: The logic in both places was wrong. We only know that two
functions will share the same TOC when both functions come from the same
section of the same object. Otherwise the linker might cause the functions to
use different TOC base addresses (unless the multi-TOC linker option is
disabled, in which case only shared-library boundaries are relevant). There are
a number of factors that can cause functions to be placed in different sections
or come from different objects (-ffunction-sections, explicitly-specified
section names, COMDAT, weak linkage, etc.). All of these need to be checked.
The existing logic only checked properties of the callee, but the properties of
the caller must also be checked (for example, calling from a function in a
COMDAT section means calling between sections).
There was a conceptual error in the resideInSameModule function in that it
allowed tail calls to functions with weak linkage and protected/hidden
visibility. While protected/hidden visibility does prevent the function
implementation from being replaced at runtime (via interposition), it does not
prevent the linker from using an alternate implementation at link time (i.e.
using some strong definition to replace the provided weak one during linking).
If this happens, then we're still potentially looking at a required TOC
restoration upon return.
Otherwise, in general, the post-call nop is needed wherever ELF interposition
needs to be supported. We don't currently support ELF interposition at the IR
level (see http://lists.llvm.org/pipermail/llvm-dev/2016-November/107625.html
for more information), and I don't think we should try to make it appear to
work in the backend in spite of that fact. This will yield subtle bugs if
interposition is attempted. As a result, regardless of whether we're in PIC
mode, we don't assume that we need to add the nop to support the possibility of
ELF interposition. However, the necessary check is in place (i.e. calling
GV->isInterposable and TM.shouldAssumeDSOLocal) so when we have functions for
which interposition is allowed at the IR level, we'll add the nop as necessary.
In the mean time, we'll generate more tail calls and fewer nops when compiling
position-independent code.
Differential Revision: https://reviews.llvm.org/D27231
llvm-svn: 289638
Summary:
The motivation is to support better the -object_path_lto option on
Darwin. The linker needs to write down the generate object files on
disk for later use by lldb or dsymutil (debug info are not present
in the final binary). We're moving this into libLTO so that we can
be smarter when a cache is enabled and hard-link when possible
instead of duplicating the files.
Reviewers: tejohnson, deadalnix, pcc
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D27507
llvm-svn: 289631
Now we only pass bit 0 of the DemandedElts to optimize operand 1 as we recurse since the upper bits are unused. Similarly we clear bit 0 for optimizing operand 0.
Also calculate UndefElts correctly.
Simplify InstCombineCalls for these instrinics to just call SimplifyDemandedVectorElts for the call instrution to reuse this support.
llvm-svn: 289629
Now we only pass bit 0 of the DemandedElts to optimize operand 1 as we recurse since the upper bits are unused.
Also calculate UndefElts correctly.
Simplify InstCombineCalls for these instrinics to just call SimplifyDemandedVectorElts for the call instrution to reuse this support.
llvm-svn: 289628
Summary:
This checks for calls to double-precision math.h with single-precision
arguments. For example, it suggests replacing ::sin(0.f) with
::sinf(0.f).
Subscribers: mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D27284
llvm-svn: 289627
Bots are broken and needs to be fixed before having this on by default.
The feature was committed in r289619.
I tried to disable it in r289624 and failed because it was initialized in two places.
llvm-svn: 289626
In r267772, we had set the PS4's default dialect for both C and
Objective-C to gnu99. Make that change only for C; we don't really
support Objective-C/C++ so there's no point fiddling the dialect.
llvm-svn: 289625
Follow-up to r289256, address a FIXME to avoid resetting the column
number. This reduced .debug_line by 2.6% in a RelWithDebInfo
self-build of clang.
llvm-svn: 289620
Summary:
Given a flag (-mllvm -reverse-iterate) this patch will enable iteration of SmallPtrSet in reverse order.
The idea is to compile the same source with and without this flag and expect the code to not change.
If there is a difference in codegen then it would mean that the codegen is sensitive to the iteration order of SmallPtrSet.
This is enabled only with LLVM_ENABLE_ABI_BREAKING_CHECKS.
Reviewers: chandlerc, dexonsmith, mehdi_amini
Subscribers: mgorny, emaste, llvm-commits
Differential Revision: https://reviews.llvm.org/D26718
llvm-svn: 289619
copy constructors of classes with array members, instead using
ArrayInitLoopExpr to represent the initialization loop.
This exposed a bug in the static analyzer where it was unable to differentiate
between zero-initialized and unknown array values, which has also been fixed
here.
llvm-svn: 289618
Summary:
LinkDyLib is only used (before arg processing) to set up the default for
LinkMode. So reset LinkMode as well, and process before --link-shared or
--link-static to allow those flags to continue to override it.
Reviewers: beanz
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27736
llvm-svn: 289608
This change re-lands r289215, by reverting r289482. The underlying
issue that caused it to be reverted has been fixed by Tim Northover in
r289496.
Original commit message for r289215:
[SCEVExpander] Use llvm data structures; NFC
Original commit message for r289482:
Revert "[SCEVExpander] Use llvm data structures; NFC"
This reverts r289215 (git SHA1 cb7b86a1). It breaks the ubsan build
because a DenseMap that keys off of `AssertingVH<T>` will hit UB when it
tries to cast the empty and tombstone keys to `T *` (due to insufficient
alignment).
This is the relevant stack trace (thanks to Mike Aizatsky):
#0 0x25cf100 in llvm::AssertingVH<llvm::PHINode>::getValPtr() const llvm/include/llvm/IR/ValueHandle.h:212:39
#1 0x25cea20 in llvm::AssertingVH<llvm::PHINode>::operator=(llvm::AssertingVH<llvm::PHINode> const&) llvm/include/llvm/IR/ValueHandle.h:234:19
#2 0x25d0092 in llvm::DenseMapBase<llvm::DenseMap<llvm::AssertingVH<llvm::PHINode>, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::AssertingVH<llvm::PHINode> >, llvm::detail::DenseSetPair<llvm::AssertingVH<llvm::PHINode> > >, llvm::AssertingVH<llvm::PHINode>, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::AssertingVH<llvm::PHINode> >, llvm::detail::DenseSetPair<llvm::AssertingVH<llvm::PHINode> > >::clear() llvm/include/llvm/ADT/DenseMap.h:113:23
llvm-svn: 289602
Summary:
This patch will add loop metadata on the pre and post loops generated by IRCE.
Currently, we have metadata for disabling optimizations such as vectorization,
unrolling, loop distribution and LICM versioning (and confirmed that these
optimizations check for the metadata before proceeding with the transformation).
The pre and post loops generated by IRCE need not go through loop opts (since
these are slow paths).
Added two test cases as well.
Reviewers: sanjoy, reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26806
llvm-svn: 289588
This annotation allows the optimizer to split vtable groups, as permitted by
a change to the Itanium ABI [1] that prevents compilers from adjusting virtual
table pointers between virtual tables.
[1] https://github.com/MentorEmbedded/cxx-abi/pull/7
Differential Revision: https://reviews.llvm.org/D24431
llvm-svn: 289585
In a future change, this representation will allow us to use the new inrange
annotation on getelementptr to allow the optimizer to split vtable groups.
Differential Revision: https://reviews.llvm.org/D22296
llvm-svn: 289584
We currently check if the exact trip count is known and is smaller than the
"tiny loop" bound. We should be checking the maximum bound on the trip count
instead.
Differential Revision: https://reviews.llvm.org/D27690
llvm-svn: 289583
The test case clang-tidy/readability-identifier-naming.cpp segfaults on
powerpc64 little endian (starting with r288563) when a bootstrap build/test
is done. To get the buildbot running again deactivate the test.
When the issue is resolved reactivate it.
llvm-svn: 289581
32-bit MSVC doesn't provide more than 4 byte stack alignment by default.
This conflicts with PointerUnion's attempt to make assertions about
alignment. This fixes the problem by explicitly asking the compiler for
8 byte alignment.
llvm-svn: 289575
Summary:
This patch aims to generalize matching of the strided store accesses to more general masks.
The more general rule is to have consecutive accesses based on the stride:
[x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...]
All elements in the masks need not form a contiguous space, there may be gaps.
As before, undefs are allowed and filled in with adjacent element loads.
Reviewers: HaoLiu, mssimpso
Subscribers: mkuper, delena, llvm-commits
Differential Revision: https://reviews.llvm.org/D23646
llvm-svn: 289573
Summary:
I atually had an integer overflow on 32-bit with D27428 that didn't reproduce
locally, as the test servers would manage allocate addresses in the 0xffffxxxx
range, which led to some issues when rounding addresses.
At this point, I feel that Scudo could benefit from having its own combined
allocator, as we don't get any benefit from the current one, but have to work
around some hurdles (alignment checks, rounding up that is no longer needed,
extraneous code).
Reviewers: kcc, alekseyshl
Subscribers: llvm-commits, kubabrecka
Differential Revision: https://reviews.llvm.org/D27681
llvm-svn: 289572