This is the last interesting usage in all of LLVM's headers. The
remaining usages in headers are the core typesystem bits (Core.h,
instruction types, and InstVisitor) and as the return of
`BasicBlock::getTerminator`. The latter is the big remaining API point
that I'll remove after mass updates to user code.
llvm-svn: 344501
This requires updating a number of .cpp files to adapt to the new API.
I've just systematically updated all uses of `TerminatorInst` within
these files te `Instruction` so thta I won't have to touch them again in
the future.
llvm-svn: 344498
LLVM APIs. There weren't very many.
We still have the instruction visitor, and APIs with TerminatorInst as
a return type or an output parameter.
llvm-svn: 344494
Summary:
TwoAddressInstruction pass typically rewrites
%1:short = foo %0.sub_lo:long
as
%1:short = COPY %0.sub_lo:long
%1:short = foo %1:short
when having tied operands.
If there are extra un-tied operands that uses the same reg and
subreg, such as the second and third inputs to fie here:
%1:short = fie %0.sub_lo:long, %0.sub_hi:long, %0.sub_lo:long
then there was a bug which replaced the register %0 also for
the un-tied operand, but without changing the subregister indices.
So we used to get:
%1:short = COPY %0.sub_lo:long
%1:short = fie %1, %1.sub_hi:short, %1.sub_lo:short
With this fix we instead get:
%1:short = COPY %0.sub_lo:long
%1:short = fie %1, %0.sub_hi:long, %1
Reviewers: arsenm, JesperAntonsson, kparzysz, MatzeB
Reviewed By: MatzeB
Subscribers: bjope, kparzysz, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D36224
llvm-svn: 344492
Renames:
JITDylib's setFallbackDefinitionGenerator method to setGenerator.
DynamicLibraryFallbackGenerator class to DynamicLibrarySearchGenerator.
ReexportsFallbackDefinitionGenerator to ReexportsGenerator.
llvm-svn: 344489
Summary:
I've noticed that the bitcasts we introduce for these make computeKnownBits and computeNumSignBits not work well in LegalizeVectorOps. LegalizeVectorOps legalizes bottom up while LegalizeDAG legalizes top down. The bottom up strategy for LegalizeVectorOps means operands are legalized before their uses. So we promote and/or/xor before we legalize the operands that use them making computeKnownBits/computeNumSignBits in places like LowerTruncate suboptimal. I looked at changing LegalizeVectorOps to be top down as well, but that was more disruptive and caused some regressions. I also looked at just moving promotion of binops to LegalizeDAG, but that had a few issues one around matching AND,ANDN,OR into VSELECT because I had to create ANDN as vXi64, but the other nodes hadn't legalized yet, I didn't look too hard at fixing that.
This patch seems to produce better results overall than my other attempts. We now form broadcasts of constants better in some cases. For at least some of them the AND was being introduced in LegalizeDAG, promoted to vXi64, and the BUILD_VECTOR was also legalized there. I think we got bad ordering of that. Now the promotion is out of the legalizer so we handle this better.
In the longer term I think we really should evaluate whether we should be doing this promotion at all. It's really there to reduce isel pattern count, but I'm wondering if we'd be better served just eating the pattern cost or doing C++ based isel for vector and/or/xor in X86ISelDAGToDAG. The masked and/or/xor will definitely be difficult in patterns if a bitcast gets between the vselect and the and/or/xor node. That becomes a lot of permutations to cover.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53107
llvm-svn: 344487
Landing this as a separate part of https://reviews.llvm.org/D50480, being a
seemingly unrelated change ([LV] Vectorizing loops of arbitrary trip count
without remainder under opt for size).
llvm-svn: 344483
The final stage of CTPOP expansion (v = (v * 0x01010101...) >> (Len - 8)) is completely pointless for the byte (Len = 8) case as it reduces to (v = (v * 0x01...) >> 0), but annoyingly this doesn't always get optimized away.
Found while investigating generic vector CTPOP expansion (PR32655).
llvm-svn: 344477
This is part of the missing IR-level folding noted in D52912.
This should be ok as a canonicalization because the new shuffle mask can't
be any more complicated than the existing shuffle mask. If there's some
target where the shorter vector shuffle is not legal, it should just end up
expanding to something like the pair of shuffles that we're starting with here.
Differential Revision: https://reviews.llvm.org/D53037
llvm-svn: 344476
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
Summary: This is similar to what D52528 did for loads. It should match what generic type legalization does in 64-bit mode where it uses a v2i64 cast and an i64 store.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53173
llvm-svn: 344470
This adds two arguments to the main ExecutionSession::lookup method:
MatchNonExportedInJD, and MatchNonExported. These control whether and where
hidden symbols should be matched when searching a list of JITDylibs.
A similar effect could have been achieved by filtering search results, but
this would have involved materializing symbol definitions (since materialization
is triggered on lookup) only to throw the results away, among other issues.
llvm-svn: 344467
The CTPOP case has been changed from VT.getSizeInBits to VT.getScalarSizeInBits - but this fits in with future work for vector support (PR32655) and doesn't affect any current (scalar) uses.
llvm-svn: 344461
Summary:
getShiftAmountTy for X86 returns MVT::i8. If a BSWAP or BITREVERSE is created that requires promotion and the difference between the original VT and the promoted VT is more than 255 then we won't able to create the constant.
This patch adds a check to replace the result from getShiftAmountTy to MVT::i32 if the difference won't fit. This should get legalized later when the shift is ultimately expanded since its clearly an illegal type that we're only promoting to make it a power of 2 bit width. Alternatively we could base the decision completely on the largest shift amount the promoted VT could use.
Vectors should be immune here because getShiftAmountTy always returns the incoming VT for vectors. Only the scalar shift amount can be changed by the targets.
Reviewers: eli.friedman, RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53232
llvm-svn: 344460
There is one remnant - AVX1 custom splitting of 256-bit vectors - which is due to a regression where the X86ISD::ANDNP is still performed as a YMM.
I've also tightened the CTLZ or CTPOP lowering in SelectionDAGLegalize::ExpandBitCount to require a legal CTLZ - it doesn't affect existing users and fixes an issue with AVX512 codegen.
llvm-svn: 344457
Use isConstantSplat instead of ISD::isConstantSplatVector to let us us peek through to illegal types (in this case for i686 targets to recognise i64 constants)
llvm-svn: 344452
If we have better CTLZ support than CTPOP, then use cttz(x) = width - ctlz(~x & (x - 1)) - and remove the CTTZ_ZERO_UNDEF handling as it no longer gives better codegen.
Similar to rL344447, this is also closer to LegalizeDAG's approach
llvm-svn: 344448
This patch changes the vector CTTZ lowering from:
cttz(x) = ctpop((x & -x) - 1)
to:
cttz(x) = ctpop(~x & (x - 1))
Not only does this make better use of the PANDN instruction, but it also matches the LegalizeDAG method which should allow us to remove the x86 specific code at some point in the future (we need to fix some issues with the bitcasted logic ops and CTPOP lowering first).
Differential Revision: https://reviews.llvm.org/D53214
llvm-svn: 344447
Add shuffle lowering for the case where we can shuffle the lanes into place followed by an in-lane permute.
This is mainly for cases where we can have non-repeating permutes in each lane, but for now I've just enabled it for v4f64 unary shuffles to fix PR39161 - there is no test coverage for other shuffles that might benefit yet.
We now have several cross-lane shuffle lowering methods that all do something similar - I've looked at merging some of these (notably by making the repeated mask mechanism in lowerVectorShuffleByMerging128BitLanes optional), but there is a lot of assertions/assumptions in the way that makes this tricky - I ended up going for adding yet another relatively simple method instead.
Differential Revision: https://reviews.llvm.org/D53148
llvm-svn: 344446
Summary:
AArch64 can fold some shift+extend operations on the RHS operand of
comparisons, so swap the operands if that makes sense.
This provides a fix for https://bugs.llvm.org/show_bug.cgi?id=38751
Reviewers: efriedma, t.p.northover, javed.absar
Subscribers: mcrosier, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D53067
llvm-svn: 344439
Summary:
These new intrinsics have the semantics of the `minimum` and `maximum`
operations specified by the latest draft of IEEE 754-2018. Unlike
llvm.minnum and llvm.maxnum, these new intrinsics propagate NaNs and
always treat -0.0 as less than 0.0. `minimum` and `maximum` lower
directly to the existing `fminnan` and `fmaxnan` ISel DAG nodes. It is
safe to reuse these DAG nodes because before this patch were only
emitted in situations where there were known to be no NaN arguments or
where NaN propagation was correct and there were known to be no zero
arguments. I know of only four backends that lower fminnan and
fmaxnan: WebAssembly, ARM, AArch64, and SystemZ, and each of these
lowers fminnan and fmaxnan to instructions that are compatible with
the IEEE 754-2018 semantics.
Reviewers: aheejin, dschuff, sunfish, javed.absar
Subscribers: kristof.beyls, dexonsmith, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D52764
llvm-svn: 344437
Summary:
GetOrCreateFunctionComdat is currently used in SanitizerCoverage,
where it's defined. I'm planing to use it in HWASAN as well,
so moving it into a common location.
NFC
Reviewers: morehouse
Reviewed By: morehouse
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53218
llvm-svn: 344433
SelectionDAGBuilder::visitShift will always zero-extend a shift amount when it
is promoted to the ShiftAmountTy. This results in zero-extension (masking)
which is unnecessary for RISC-V as the shift operations only read the lower 5
or 6 bits (RV32 or RV64).
I initially proposed adding a getExtendForShiftAmount hook so the shift amount
can be any-extended (D52975). @efriedma explained this was unsafe, so I have
instead eliminate the unnecessary and operations at instruction selection time
in a manner similar to X86InstrCompiler.td.
Differential Revision: https://reviews.llvm.org/D53224
llvm-svn: 344432
Generic legalization should be able to finish legalizing the EXTRACT_SUBVECTOR probably by turning it into a BUILD_VECTOR. But we should emit the simplest sequence.
llvm-svn: 344424
The algorithm we would do previously was identical to generic legalization. If we ever switch to legalizing integer vectors via widening we'll be able to kill off the code since it now only runs for promotion.
llvm-svn: 344423
This is more consistent with what we usually do and matches some code X86 custom emits in some cases that I think I can cleanup.
The MIPS test change just looks to be an instruction ordering change.
llvm-svn: 344422
The initial patch was not reviewed, and does not have any tests;
it should not have been merged.
This reverts 344395, 344390, 344387, 344385, 344381, 344376,
and 344366.
llvm-svn: 344405
This saves a conversion to extracts and build_vector. We already do this when both the result and the input need to be widened to the same type.
This changed the sse-intrinsics-fast-isel test because we don't lower (insert_vector_elt (scalar_to_vector X), Y, 1) well. We turn it into (vector_shuffle (scalar_to_vector X), (scalar_to_vector Y), <0, 4, 2, 3>) losing track of the fact that the upper elts could be undef.
We should probably find a way to prevent the scalarization of the <2 x f32> load on these tests.
llvm-svn: 344404
If the input type is widened as well, but we still were forced to unroll, we shouldn't be considering the widened input element count. We should only create as many scalar operations as the original type called for.
This will be important for an upcoming patch.
llvm-svn: 344403
Summary: We can fill in the command line and compiler path later if we want.
Reviewers: zturner
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D53179
llvm-svn: 344393
Summary:
Linking with the /OPT:REF linker flag when building COFF files causes
the linker to strip SanitizerCoverage's constructors. Prevent this by
giving the constructors WeakODR linkage and by passing the linker a
directive to include sancov.module_ctor.
Include a test in compiler-rt to verify libFuzzer can be linked using
/OPT:REF
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: rnk, morehouse, hiraditya
Differential Revision: https://reviews.llvm.org/D52119
llvm-svn: 344391