For tagged-globals, we only need to disable relaxation for globals that
we actually tag. With this patch function pointer relocations, which
we do not instrument, can be relaxed.
This patch also makes tagged-globals work properly with LTO, as
-Wa,-mrelax-relocations=no doesn't work with LTO.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D113220
Be more consistent in the naming convention for the various RET instructions to specify in terms of bitwidth.
Helps prevent future scheduler model mismatches like those that were only addressed in D44687.
Differential Revision: https://reviews.llvm.org/D113302
Based on the reasoning of D53903, register operands of DBG_VALUE are
invariably treated as RegState::Debug operands. This change enforces
this invariant as part of MachineInstr::addOperand so that all passes
emit this flag consistently.
RegState::Debug is inconsistently set on DBG_VALUE registers throughout
LLVM. This runs the risk of a filtering iterator like
MachineRegisterInfo::reg_nodbg_iterator to process these operands
erroneously when not parsed from MIR sources.
This issue was observed in the development of the llvm-mos fork which
adds a backend that relies on physical register operands much more than
existing targets. Physical RegUnit 0 has the same numeric encoding as
$noreg (indicating an undef for DBG_VALUE). Allowing debug operands into
the machine scheduler correlates $noreg with RegUnit 0 (i.e. a collision
of register numbers with different zero semantics). Eventually, this
causes an assert where DBG_VALUE instructions are prohibited from
participating in live register ranges.
Reviewed By: MatzeB, StephenTozer
Differential Revision: https://reviews.llvm.org/D110105
When set opt-bisect-limit to some value that is less than ISel pass
in command line and CurBisectNum expired, "DAG to DAG" pass lower
its opt level to O0. However "processimpdefs" and "X86 FP Stackifier"
is not stopped due to the CurBisectNum expiration. So undefined fp0
is generated. This cause crash in the "X86 FP Stackifier" pass,
because Stackifier doesn't expect any undefined fp value.
Here is the scenario that cause compiler crash.
successors: %bb.26
liveins: $r14
ST_FPrr $st0, implicit-def $fpsw, implicit $fpcw
renamable $rdi = MOV64ri @.str.3.16422
renamable $rdx = LEA64r %stack.6, 1, $noreg, 0, $noreg
ADJCALLSTACKDOWN64 0, 0, 0, implicit-def $rsp, implicit-def dead
$eflags, implicit-def $ssp, implicit $rsp, implicit $ssp
dead $esi = MOV32r0 implicit-def dead $eflags, implicit-def $rsi
CALL64pcrel32 @foo, implicit $rsp, implicit $ssp, implicit $rdi,
implicit $rsi, implicit $rdx, implicit-def dead $fp0
renamable $xmm0 = MOVSDrm_alt %stack.10, 1, $noreg, 0, $noreg :: (load 8
from %stack.10)
ADJCALLSTACKUP64 0, 0, implicit-def $rsp, implicit-def dead $eflags,
implicit-def $ssp, implicit $rsp, implicit $ssp
renamable $fp2 = CHS_Fp80 killed undef renamable $fp0, implicit-def
$fpsw
JMP_1 %bb.26
The CALL64pcrel32 mark fp0 dead, so llvm free the stack slot for fp0
and the stack become empty. In the late instruction CHS_Fp80, it use
undefined register fp0, the original code assume there must be a stack
slot for the src register (fp0) without respecting it is undefined,
so llvm report error.
We have some discussion in https://reviews.llvm.org/D104440 and we
decide to fix it in fast ISel. The fix is to lower undefined fp value to
zero value, so that it release the burden of "X86 FP Stackifier" pass.
Thank Craig for the suggestion and the initial patch to fix it.
Differential Revision: https://reviews.llvm.org/D104678
This adds support to the X86 backend for the newly committed swiftasync
function parameter. If such a (pointer) parameter is present it gets stored
into an augmented frame record (populated in IR, but generally containing
enhanced backtrace for coroutines using lots of tail calls back and forth).
The context frame is identical to AArch64 (primarily so that unwinders etc
don't get extra complexity). Specfically, the new frame record is [AsyncCtx,
%rbp, ReturnAddr], and its presence is signalled by bit 60 of the stored %rbp
being set to 1. %rbp still points to the frame pointer in memory for backwards
compatibility (only partial on x86, but OTOH the weird AsyncCtx before the rest
of the record is because of x86).
Recommited with a fix for unwind info when i386 pc-rel thunks are
adjacent to a prologue.
This adds support to the X86 backend for the newly committed swiftasync
function parameter. If such a (pointer) parameter is present it gets stored
into an augmented frame record (populated in IR, but generally containing
enhanced backtrace for coroutines using lots of tail calls back and forth).
The context frame is identical to AArch64 (primarily so that unwinders etc
don't get extra complexity). Specfically, the new frame record is [AsyncCtx,
%rbp, ReturnAddr], and its presence is signalled by bit 60 of the stored %rbp
being set to 1. %rbp still points to the frame pointer in memory for backwards
compatibility (only partial on x86, but OTOH the weird AsyncCtx before the rest
of the record is because of x86).
Swift's new concurrency features are going to require guaranteed tail calls so
that they don't consume excessive amounts of stack space. This would normally
mean "tailcc", but there are also Swift-specific ABI desires that don't
naturally go along with "tailcc" so this adds another calling convention that's
the combination of "swiftcc" and "tailcc".
Support is added for AArch64 and X86 for now.
It used to be that all of our intrinsics were call instructions, but over time, we've added more and more invokable intrinsics. According to the verifier, we're up to 8 right now. As IntrinsicInst is a sub-class of CallInst, this puts us in an awkward spot where the idiomatic means to check for intrinsic has a false negative if the intrinsic is invoked.
This change switches IntrinsicInst from being a sub-class of CallInst to being a subclass of CallBase. This allows invoked intrinsics to be instances of IntrinsicInst, at the cost of requiring a few more casts to CallInst in places where the intrinsic really is known to be a call, not an invoke.
After this lands and has baked for a couple days, planned cleanups:
Make GCStatepointInst a IntrinsicInst subclass.
Merge intrinsic handling in InstCombine and use idiomatic visitIntrinsicInst entry point for InstVisitor.
Do the same in SelectionDAG.
Do the same in FastISEL.
Differential Revision: https://reviews.llvm.org/D99976
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
If the successor block has a phi node, then additional moves may
be inserted into predecessors, which may clobber eflags. Don't try
to fold the with.overflow result into the branch in that case.
This is done by explicitly checking for any phis in successor
blocks, not sure if there's some more principled way to address
this. Other fused compare and branch patterns avoid the issue by
emitting the comparison when handling the branch, so that no
instructions may be inserted in between. In this case, the
with.overflow call is emitted separately (and I don't think this
is avoidable, as it will generally have at least two users).
Fixes https://bugs.llvm.org/show_bug.cgi?id=49587.
Differential Revision: https://reviews.llvm.org/D98600
None of the code in this function was written to handle
vectors. Most of the cases already fail for vectors for one
reason or another. The exception is an optimization that
detects identical operands. This can be triggered by vectors,
but the code always creates a 0 or 1 constants in a scalar
register which is incorrect for vectors.
Fixes PR49706.
This is directly analogous to the existing no_caller_saved_registers, but with the opposite intention. A function or call so marked shifts the responsibility of spilling the usual CSRs to it's caller.
An indirect call site and callee which don't agree on the attribute is ill defined.
The motivation for this change is that being able to prune callee saves (without modifying other details of the calling convention) is sometimes useful when generating stubs and adapters. There's no intention to expose this as a source language feature; this is expected to be used by frontends to implement adapters where warranted.
Some specific examples of use cases:
* GC compatible compiled code wants to call an externally defined library function without needing to track pointer values through CSRs.
* debug enabled code wants to call precompiled library which doesn't provide enough information to track CSRs while preserving debug quality in caller.
* adapter stub entering hand written assembler which doesn't follow normal calling conventions.
This fixes the bug referenced by 5582a79876
which was exposed by 961f31d8ad.
With this change, `movq src@GOTPCREL, %rcx` => `movq src@GOTPCREL(%rip), %rcx`
The build bots caught two additional pre-existing problems exposed by the test change part of my change https://reviews.llvm.org/D91339, when expensive checks are enabled. This fixes one of them.
X86 has CALL64r and CALL32r opcodes, where CALL64r takes a 64-bit register, and CALL32r takes a 32-bit register. CALL64r can only be used in 64-bit mode, CALL32r can only be used in 32-bit mode. LLVM would assume that after picking the appropriate CALLr opcode, a pointer-sized register would be a valid operand, but in x32 mode, a 64-bit mode, pointers are 32 bits. In this mode, it is invalid to directly pass a pointer to CALL64r, it needs to be extended to 64 bits first.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D91924
%rip was only included for 64-bit RIP-relative relocations, but needs to be included for 32-bit as well.
Reviewed By: MaskRay, RKSimon
Differential Revision: https://reviews.llvm.org/D91339
This requires adding a missing 'const' to the definition because
the callers are using const args, but there should be no change
in behavior.
The intrinsic method was added with D86798 / rG096527214033
The following program miscompiles because rL216012 added static
relocation model support but not for PIC.
```
// clang -fpic -mcmodel=large -O0 a.cc
double foo() { return 42.0; }
```
This patch adds PIC support.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D86024
Previously we just updated a map and moved on. But it possible
we cached known bits information with the vreg that can be used by
another basic block. If the other basic block has a different view
of the VT these known bits won't make sense.
By emitting a copy we ensure we have different vregs before and
after the bitcast. This prevents the known bits from being used
with the wrong type.
Differential Revision: https://reviews.llvm.org/D82517
Large code model doesn't mean anything to 32-bit mode. But nothing
prevents it from being set. Ignore to avoid generating 64-bit mode
only instructions.
Differential Revision: https://reviews.llvm.org/D80768
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
Now that load/store alignment is required, we no longer need most
of them. Also switch the getLoadStoreAlignment() helper to return
Align instead of MaybeAlign.
This is the same as what was done to the CallLoweringInfo in
TargetLowering.h in r309159.
This is just a step on the way to replacing this with CallBase.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: dylanmckay, sdardis, nemanjai, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76551
This fails an assert because the type is marked in the calling
convention td file as needing promotion, but the code doesn't know
how to do it.
It also much more complicated because we try to pass these in
xmm/ymm/zmm registers. As of a few weeks ago we do this promotion
from getRegisterTypeForCallingConv before the td file generated
code gets involved.
We were checking that the original Value * for the compare operands
were null. But that can never happen.
I believe we intended to check for 0 registers here instead.
Fixes PR44749.
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320