insertUse, moveBefore and moveAfter operations.
Summary:
This creates a basic MemorySSA updater that handles arbitrary
insertion of uses and defs into MemorySSA, as well as arbitrary
movement around the CFG. It replaces the current splice API.
It can be made to handle arbitrary control flow changes.
Currently, it uses the same updater algorithm from D28934.
The main difference is because MemorySSA is single variable, we have
the complete def and use list, and don't need anyone to give it to us
as part of the API. We also have to rename stores below us in some
cases.
If we go that direction in that patch, i will merge all the updater
implementations (using an updater_traits or something to provide the
get* functions we use, called read*/write* in that patch).
Sadly, the current SSAUpdater algorithm is way too slow to use for
what we are doing here.
I have updated the tests we have to basically build memoryssa
incrementally using the updater api, and make sure it still comes out
the same.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29047
llvm-svn: 293356
In r292621, the recommit fixes a bug related with live interval update
after the partial redundent copy is moved.
This recommit solves an additional bug related to the lack of update of
subranges.
The original patch is to solve the performance problem described in
PR27827. Register coalescing sometimes cannot remove a copy because of
interference. But if we can find a reverse copy in one of the predecessor
block of the copy, the copy is partially redundent and we may remove the
copy partially by moving it to the predecessor block without the
reverse copy.
Differential Revision: https://reviews.llvm.org/D28585
Re-apply r292621
Revert "Revert rL292621. Caused some internal build bot failures in apple."
This reverts commit r292984.
Original patch: Wei Mi <wmi@google.com>
Subrange fix: Mostly Matthias Braun <matze@braunis.de>
llvm-svn: 293353
We have to delete the block manually or it leaks. That triggers failures in
-fsanitize=leak bots (unsurprisingly), which should be fixed by this patch.
llvm-svn: 293347
This reverts r293337, which breaks tests on Windows:
malloc-no-intercept-499eb7.o : error LNK2019: unresolved external symbol _mallinfo referenced in function _main
llvm-svn: 293346
This is a minimal patch to avoid the infinite loop in:
https://llvm.org/bugs/show_bug.cgi?id=31751
But the general problem is bigger: we're not canonicalizing all of the min/max forms reported
by value tracking's matchSelectPattern(), and we don't define min/max consistently. Some code
uses matchSelectPattern(), other code uses matchers like m_Umax, and others have their own
inline definitions which may be subtly different from any of the above.
The reason that the test cases in this patch need a cast op to trigger is because we don't
(yet) canonicalize all min/max forms based on matchSelectPattern() in
canonicalizeMinMaxWithConstant(), but we do make min/max+cast transforms based on
matchSelectPattern() in visitSelectInst().
The location of the icmp transforms that trigger the inf-loop seems arbitrary at best, so
I'm moving those behind the min/max fence in visitICmpInst() as the quick fix.
llvm-svn: 293345
As Mehdi put it, entities should either be
available_externally+weak_odr, or linkonce_odr+linkonce_odr. While some
functions are emitted a_e/weak, their local variables were emitted
a_e/linkonce_odr.
While it might be nice to emit them a_e/weak, the Itanium ABI (& best
guess at MSVC's behavior as well) requires the local to be
linkonce/linkonce.
Reviewers: rsmith, mehdi_amini
Differential Revision: https://reviews.llvm.org/D29233
llvm-svn: 293344
Ubsan does not report UB shifts in some cases where the shift exponent
needs to be truncated to match the type of the shift base. We perform a
range check on the truncated shift amount, leading to false negatives.
Fix the issue (PR27271) by performing the range check on the original
shift amount.
Differential Revision: https://reviews.llvm.org/D29234
llvm-svn: 293343
Add some generally useful isl tools into a their own new ISLTools.cpp.
These are the helpers were extracted from and will be use by the DeLICM
algorithm (https://reviews.llvm.org/D24716).
Suggested-by: Tobias Grosser <tobias@grosser.es>
llvm-svn: 293340
Coverage/smoke Gfx7/8 tests were committed r292922 but then reverted
by r292974 due to AddressSanitizer failure, which is fixed by this patch.
Tests to be re-committed soon.
llvm-svn: 293338
Summary:
In https://bugs.freebsd.org/215125 I was notified that some configure
scripts attempt to test for the Linux-specific `mallinfo` and `mallopt`
functions by compiling and linking small programs which references the
functions, and observing whether that results in errors.
FreeBSD and macOS do not have the `mallinfo` and `mallopt` functions, so
normally these tests would fail, but when sanitizers are enabled, they
incorrectly succeed, because the sanitizers define interceptors for
these functions. This also applies to some other malloc-related
functions, such as `memalign`, `pvalloc` and `cfree`.
Fix this by not intercepting `mallinfo`, `mallopt`, `memalign`,
`pvalloc` and `cfree` for FreeBSD and macOS, in all sanitizers.
Reviewers: emaste, kcc
Subscribers: hans, joerg, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D27654
llvm-svn: 293337
Change the original algorithm so that it scales better when meeting
very large bitcode where every instruction does not implies a global.
The target query is "how to you get all the globals referenced by
another global"?
Before this patch, it was doing this by walking the body (or the
initializer) and collecting the references. What this patch is doing,
it precomputing the answer to this query for the whole module by
walking the use-list of every global instead.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D28549
llvm-svn: 293328
Preparation for upcoming changes. No testcase as none of the public
targets bundles early enough and has a post machine scheduler enabled at
the same time. The error is also easily catched by asserts.
llvm-svn: 293324
[ELF] Fixed formatting. NFC
and
[ELF] Bypass section type check
Differential revision: https://reviews.llvm.org/D28761
They do the opposite of what was asked for in the code review.
llvm-svn: 293320
Put the duplicated i_maxmin into traits_t by adding new members max_value and
min_value. Put ___kmp_size_type into traits_t by adding member type_size.
Differential Revision: https://reviews.llvm.org/D28847
llvm-svn: 293316
Summary: Small change to get the FREEP instruction to decode properly.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29193
llvm-svn: 293314
When the monitor thread is used, most threads in the team directly go to
sleep if the copy of bt_intervals/bt_set is not available in the cache,
and this happens at least once per thread in the wait function, making the
overall performance slightly better.
This change tries to mimic this behavior by using the bt_intervals cache,
which simply keeps the blocktime interval in terms of the platform-dependent
ticks or nanoseconds.
Patch by Hansang Bae
Differential Revision: https://reviews.llvm.org/D28906
llvm-svn: 293312
In r279546 I disabled all frame pointer elimination at the front-end on
ARM-Darwin (and warned about it) because before that the backend had been
silently ignoring these options. It turns out we didn't ignore
-momit-leaf-frame-pointer though, just the more general -fomit-frame-pointer.
So this re-enables passing that down to CodeGen so that everything really does
continue working as before (with better diagnostics).
llvm-svn: 293311
Accomplishes what r292982 was supposed to, which ended up
only really making the necessary test changes.
This should be applied to the 4.0 branch.
Patch by Vedran Miletić <vedran@miletic.net>
llvm-svn: 293310
The interleaved access pass is an IR-to-IR transformation that runs before code
generation. It matches interleaved memory operations to target-specific
intrinsics (that are later lowered to load and store multiple instructions on
ARM/AArch64). We place tests for similar passes (e.g., GlobalMergePass) under
test/Transforms. This patch moves the InterleavedAccessPass tests out of
test/CodeGen and into target-specific directories under
test/Transforms/InterleavedAccess.
Although the pass is an IR pass, many of the existing tests were llc tests
rather opt tests. For example, the tests would check for ldN/stN instructions
generated by llc rather than the intrinsic calls the pass actually inserts.
Thus, this patch updates all tests to be opt tests that check for the inserted
intrinsics. We already have separate CodeGen tests that ensure we lower the
interleaved access intrinsics to their corresponding ldN/stN instructions. In
addition to migrating the tests to opt, this patch also performs some minor
clean-up (to ensure consistent naming, etc.).
Differential Revision: https://reviews.llvm.org/D29184
llvm-svn: 293309
Summary: This change prevent the signed value of cost from being negative as the value is passed as an unsigned argument.
Reviewers: mcrosier, jmolloy, qcolombet, javed.absar
Reviewed By: mcrosier, qcolombet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28871
llvm-svn: 293307
Both on Mac and Windows, it's common to have a 'Users' directory in the
root of the filesystem, so one might specify a filename as
'/Users/me/myfile.c'. clang-cl (as well as MSVC's cl.exe) will interpret
that as invoking the '/U' option, which is probably not what the user
wanted. Add a warning about this.
Differential Revision: https://reviews.llvm.org/D29198
llvm-svn: 293305
With the adjustPassManager interface that is now possible to use
custom early module passes.
Differential Revision: https://reviews.llvm.org/D29189
llvm-svn: 293300
This is fixing pr31761: BasicAA is deducing NoAlias
on the result of the GEP if the base pointer is itself NoAlias.
This is possible only if the NoAlias on the base pointer is
deduced with a non-sized query: this should guarantee that
the pointers are belonging to different memory allocation
and that the GEP can't legally jump from one to another.
Differential Revision: https://reviews.llvm.org/D29216
llvm-svn: 293293
Summary:
MetadataLoader::MetadataLoaderImpl::parseOneMetadata uses
the following construct in a number of places:
```
MetadataList.assignValue(<...>, NextMetadataNo++);
```
There, NextMetadataNo gets incremented, and since the order
of arguments evaluation is not specified, that can happen
before or after other arguments are evaluated.
In a few cases the other arguments indirectly use NextMetadataNo.
For instance, it's
```
MetadataList.assignValue(
GET_OR_DISTINCT(DIModule,
(Context, getMDOrNull(Record[1]),
getMDString(Record[2]), getMDString(Record[3]),
getMDString(Record[4]), getMDString(Record[5]))),
NextMetadataNo++);
```
getMDOrNull calls getMD that uses NextMetadataNo:
```
MetadataList.getMetadataFwdRef(NextMetadataNo);
```
Therefore, the order of evaluation becomes important. That caused
a very subtle LLD crash that only happens if compiled with GCC or
if LLD is built with LTO. In the case if LLD is compiled with Clang
and regular linking mode, everything worked as intended.
This change extracts incrementing of NextMetadataNo outside of
the arguments list to guarantee the correct order of evaluation.
For the record, this has taken 3 days to track to the origin. It all
started with a ThinLTO bot in Chrome not being able to link a target
if debug info is enabled.
Reviewers: pcc, mehdi_amini
Reviewed By: mehdi_amini
Subscribers: aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D29204
llvm-svn: 293291