We were trying to avoid using a FrameIndex operand in non-pointer
operands in a convoluted way, and would break because of
using TargetFrameIndex. The TargetFrameIndex should only be used
in the case where it makes sense to fold it as part of the addressing
mode, otherwise it requires materialization like a normal constant.
This wasn't working reliably and failed in the added testcase, hitting
the assert when processing the frame index.
The TargetFrameIndex was coming from trying to produce an AssertZext
limiting the maximum stack size. I'm not sure this was correct to begin
with, because it is apparently possible to have a single workitem
dispatch that requires all 4G of private memory.
llvm-svn: 281824
These clean up some unnecessary or instructions in
cases with complex loops.
In the original testcase I noticed this, the same
or with exec was repeated 5 or 6 times in a row. With
this only one is emitted or sometimes a copy.
llvm-svn: 281786
This addresses a TODO to handle operations besides and. This
also starts eliminating no-op operations with a constant that
can emerge later.
llvm-svn: 281488
If the literal is being folded into src0, it doesn't matter
if it's an SGPR because it's being replaced with the literal.
Also fixes initially selecting 32-bit versions of some instructions
which also confused commuting.
llvm-svn: 281117
Summary:
Prevously assembler parsed all literals as either 32-bit integers or 32-bit floating-point values. Because of this we couldn't support f64 literals.
E.g. in instruction "v_fract_f64 v[0:1], 0.5", literal 0.5 was encoded as 32-bit literal 0x3f000000, which is incorrect and will be interpreted as 3.0517578125E-5 instead of 0.5. Correct encoding is inline constant 240 (optimal) or 32-bit literal 0x3FE00000 at least.
With this change the way immediate literals are parsed is changed. All literals are always parsed as 64-bit values either integer or floating-point. Then we convert parsed literals to correct form based on information about type of operand parsed (was literal floating or binary) and type of expected instruction operands (is this f32/64 or b32/64 instruction).
Here are rules how we convert literals:
- We parsed fp literal:
- Instruction expects 64-bit operand:
- If parsed literal is inlinable (e.g. v_fract_f64_e32 v[0:1], 0.5)
- then we do nothing this literal
- Else if literal is not-inlinable but instruction requires to inline it (e.g. this is e64 encoding, v_fract_f64_e64 v[0:1], 1.5)
- report error
- Else literal is not-inlinable but we can encode it as additional 32-bit literal constant
- If instruction expect fp operand type (f64)
- Check if low 32 bits of literal are zeroes (e.g. v_fract_f64 v[0:1], 1.5)
- If so then do nothing
- Else (e.g. v_fract_f64 v[0:1], 3.1415)
- report warning that low 32 bits will be set to zeroes and precision will be lost
- set low 32 bits of literal to zeroes
- Instruction expects integer operand type (e.g. s_mov_b64_e32 s[0:1], 1.5)
- report error as it is unclear how to encode this literal
- Instruction expects 32-bit operand:
- Convert parsed 64 bit fp literal to 32 bit fp. Allow lose of precision but not overflow or underflow
- Is this literal inlinable and are we required to inline literal (e.g. v_trunc_f32_e64 v0, 0.5)
- do nothing
- Else report error
- Do nothing. We can encode any other 32-bit fp literal (e.g. v_trunc_f32 v0, 10000000.0)
- Parsed binary literal:
- Is this literal inlinable (e.g. v_trunc_f32_e32 v0, 35)
- do nothing
- Else, are we required to inline this literal (e.g. v_trunc_f32_e64 v0, 35)
- report error
- Else, literal is not-inlinable and we are not required to inline it
- Are high 32 bit of literal zeroes or same as sign bit (32 bit)
- do nothing (e.g. v_trunc_f32 v0, 0xdeadbeef)
- Else
- report error (e.g. v_trunc_f32 v0, 0x123456789abcdef0)
For this change it is required that we know operand types of instruction (are they f32/64 or b32/64). I added several new register operands (they extend previous register operands) and set operand types to corresponding types:
'''
enum OperandType {
OPERAND_REG_IMM32_INT,
OPERAND_REG_IMM32_FP,
OPERAND_REG_INLINE_C_INT,
OPERAND_REG_INLINE_C_FP,
}
'''
This is not working yet:
- Several tests are failing
- Problems with predicate methods for inline immediates
- LLVM generated assembler parts try to select e64 encoding before e32.
More changes are required for several AsmOperands.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, artem.tamazov
Differential Revision: https://reviews.llvm.org/D22922
llvm-svn: 281050
Summary:
This fixes a rare bug in polygon stippling with non-monolithic pixel shaders.
The underlying problem is as follows: the prolog part contains the polygon
stippling sequence, i.e. a kill. The main part then enables WQM based on the
_reduced_ exec mask, effectively undoing most of the polygon stippling.
Since we cannot know whether polygon stippling will be used, the main part
of a non-monolithic shader must always return to exact mode to fix this
problem.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23131
llvm-svn: 280589
readlane/writelane do not support using m0 as the output/input.
Constrain the register class of spill vregs to try to avoid this,
but also handle spilling of the physreg when necessary by inserting
an additional copy to a normal SGPR.
llvm-svn: 280584
Summary:
Created a new td file MIMGInstructions.td which contains all definitions
of MIMG related instructions.
Reviewed by:
kzhuravl, vpykhtin
Differential Revision:
http://reviews.llvm.org/D24106
llvm-svn: 280385
There's only one use of this for the convenience
of a pattern. I think v_mov_b64_pseudo should also be
moved, but SIFoldOperands does currently make use of it.
llvm-svn: 279901
It isn't used for anything, and is also misleading since
it could be spilled at the end of the block, so it can't be relied
on. There ends up being a verifier error about using an undefined
register since the spill kills the register.
llvm-svn: 279899
Summary:
This patch implements readlane/readfirstlane intrinsics.
TODO: need to define a new register class to consider the case
that the source could be a vector register or M0.
Reviewed by:
arsenm and tstellarAMD
Differential Revision:
http://reviews.llvm.org/D22489
llvm-svn: 279660
Do most of the lowering in a pre-RA pass. Keep the skip jump
insertion late, plus a few other things that require more
work to move out.
One concern I have is now there may be COPY instructions
which do not have the necessary implicit exec uses
if they will be lowered to v_mov_b32.
This has a positive effect on SGPR usage in shader-db.
llvm-svn: 279464
The names of the tablegen defs now match the names of the ISD nodes.
This makes the world a slightly saner place, as previously "fround" matched
ISD::FP_ROUND and not ISD::FROUND.
Differential Revision: https://reviews.llvm.org/D23597
llvm-svn: 279129
Summary:
This patch define and implement amdgcn image intrinsics with sampler.
1. define vdata type to be llvm_anyfloat_ty, address type to be llvm_anyfloat_ty,
and rsrc type to be llvm_anyint_ty. As a result, we expect the intrinsics name
to have three suffixes to overload each of these three types;
2. D128 as well as two other flags are implied in the three types, for example,
if you use v8i32 as resource type, then r128 is 0!
3. don't expose TFE flag, and other flags are exposed in the instruction order:
unrm, glc, slc, lwe and da.
Differential Revision: http://reviews.llvm.org/D22838
Reviewed by:
arsenm and tstellarAMD
llvm-svn: 278291
Insert before the skip branch if one is created.
This is a somewhat more natural placement relative
to the skip branches, and makes it possible to implement
analyzeBranch for skip blocks.
The test changes are mostly due to a quirk where
the block label is not emitted if there is a terminator
that is not also a branch.
llvm-svn: 278273
Summary:
Two types of stores are possible in pixel shaders: stores to memory that are
explicitly requested at the API level, and stores that are an implementation
detail of register spilling or lowering of arrays.
For the first kind of store, we must ensure that helper pixels have no effect
and hence WQM must be disabled. The second kind of store must always be
executed, because the written value may be loaded again in a way that is
relevant for helper pixels as well -- and there are no externally visible
effects anyway.
This is a candidate for the 3.9 release branch.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: https://reviews.llvm.org/D22675
llvm-svn: 277504
Summary:
SI_ELSE is lowered into two parts:
s_or_saveexec_b64 dst, src (at the start of the basic block)
s_xor_b64 exec, exec, dst (at the end of the basic block)
The idea is that dst contains the exec mask of the preceding IF block. It can
happen that SIWholeQuadMode decides to switch from WQM to Exact mode inside
the basic block that contains SI_ELSE, in which case it introduces an instruction
s_and_b64 exec, exec, s[...]
which masks out bits that can correspond to both the IF and the ELSE paths.
So the resulting sequence must be:
s_or_savexec_b64 dst, src
s_and_b64 exec, exec, s[...] <-- added by SIWholeQuadMode
s_and_b64 dst, dst, exec <-- added by SILowerControlFlow
s_xor_b64 exec, exec, dst
Whether to add the additional s_and_b64 dst, dst, exec is currently determined
via the ExecModified tracking. With this change, it is instead determined by
an additional flag on SI_ELSE which is set by SIWholeQuadMode.
Finally: It also occured to me that an alternative approach for the long run
is for SILowerControlFlow to unconditionally emit
s_or_saveexec_b64 dst, src
...
s_and_b64 dst, dst, exec
s_xor_b64 exec, exec, dst
and have a pass that detects and cleans up the "redundant AND with exec"
pattern where possible. This could be useful anyway, because we also add
instructions
s_and_b64 vcc, exec, vcc
before s_cbranch_scc (in moveToALU), and those are often redundant. I have
some pending changes to how KILL is lowered that could also benefit from
such a cleanup pass.
In any case, this current patch could help in the short term with the whole
ExecModified business.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D22846
llvm-svn: 276972
Only if the value is negative or positive is what matters,
so use a constant that doesn't require an instruction to
materialize.
These should really just emit the write exec directly,
but for stick with the kill pseudo-terminator.
llvm-svn: 275988
This is to help moveSILowerControlFlow to before regalloc.
There are a couple of tradeoffs with this. The complete CFG
is visible to more passes, the loop body avoids an extra copy of m0,
vcc isn't required, and immediate offsets can be shrunk into s_movk_i32.
The disadvantage is the register allocator doesn't understand that
the single lane's vector is dead within the loop body, so an extra
register is used to outlive the loop block when expanding the
VGPR -> m0 loop. This also now results in worse waitcnt insertion
before the loop instead of after for pending operations at the point
of the indexing, but that should be fixed by future improvements to
cross block waitcnt insertion.
v_movreld_b32's operands are now modeled more correctly since vdst
is not a true output. This is kind of a hack to treat vdst as a
use operand. Extra checking is required in the verifier since
I can't seem to get tablegen to emit an implicit operand for a
virtual register.
llvm-svn: 275934