Address space casts in general may change the element type, but
don't allow it in the method working on Address, so we can
preserve the element type.
CreatePointerBitCastOrAddrSpaceCast() still needs to be addressed.
We have the `clang -cc1` command-line option `-funwind-tables=1|2` and
the codegen option `VALUE_CODEGENOPT(UnwindTables, 2, 0) ///< Unwind
tables (1) or asynchronous unwind tables (2)`. However, this is
encoded in LLVM IR by the presence or the absence of the `uwtable`
attribute, i.e. we lose the information whether to generate want just
some unwind tables or asynchronous unwind tables.
Asynchronous unwind tables take more space in the runtime image, I'd
estimate something like 80-90% more, as the difference is adding
roughly the same number of CFI directives as for prologues, only a bit
simpler (e.g. `.cfi_offset reg, off` vs. `.cfi_restore reg`). Or even
more, if you consider tail duplication of epilogue blocks.
Asynchronous unwind tables could also restrict code generation to
having only a finite number of frame pointer adjustments (an example
of *not* having a finite number of `SP` adjustments is on AArch64 when
untagging the stack (MTE) in some cases the compiler can modify `SP`
in a loop).
Having the CFI precise up to an instruction generally also means one
cannot bundle together CFI instructions once the prologue is done,
they need to be interspersed with ordinary instructions, which means
extra `DW_CFA_advance_loc` commands, further increasing the unwind
tables size.
That is to say, async unwind tables impose a non-negligible overhead,
yet for the most common use cases (like C++ exceptions), they are not
even needed.
This patch extends the `uwtable` attribute with an optional
value:
- `uwtable` (default to `async`)
- `uwtable(sync)`, synchronous unwind tables
- `uwtable(async)`, asynchronous (instruction precise) unwind tables
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114543
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
Add an overload that accepts and returns an Address, as we
generally just want to replace the pointer with a laundered one,
while retaining remaining information.
Explicitly track the pointer element type in Address, rather than
deriving it from the pointer type, which will no longer be possible
with opaque pointers. This just adds the basic facility, for now
everything is still going through the deprecated constructors.
I had to adjust one place in the LValue implementation to satisfy
the new assertions: Global registers are represented as a
MetadataAsValue, which does not have a pointer type. We should
avoid using Address in this case.
This implements a part of D103465.
Differential Revision: https://reviews.llvm.org/D115725
at the start of the entry block, which in turn would aid better code transformation/optimization.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D110257
This implements the new implicit conversion sequence to an incomplete
(unbounded) array type. It is mostly Richard Smith's work, updated to
trunk, testcases added and a few bugs fixed found in such testing.
It is not a complete implementation of p0388.
Differential Revision: https://reviews.llvm.org/D102645
Per the GCC info page:
If the function is declared 'extern', then this definition of the
function is used only for inlining. In no case is the function
compiled as a standalone function, not even if you take its address
explicitly. Such an address becomes an external reference, as if
you had only declared the function, and had not defined it.
Respect that behavior for inline builtins: keep the original definition, and
generate a copy of the declaration suffixed by '.inline' that's only referenced
in direct call.
This fixes holes in c3717b6858.
Differential Revision: https://reviews.llvm.org/D111009
The matrix extension requires the indices for matrix subscript
expression to be valid and it is UB otherwise.
extract/insertelement produce poison if the index is invalid, which
limits the optimizer to not be bale to scalarize load/extract pairs for
example, which causes very suboptimal code to be generated when using
matrix subscript expressions with variable indices for large matrixes.
This patch updates IRGen to emit assumes to for index expression to
convey the information that the index must be valid.
This also adjusts the order in which operations are emitted slightly, so
indices & assumes are added before the load of the matrix value.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D102478
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
This function was defaulting to use the ABI alignment for the LLVM
type. Here we change to use the preferred alignment. This will allow
unification with GetTempAlloca, which if alignment isn't specified, uses
the preferred alignment.
Differential Revision: https://reviews.llvm.org/D108450
This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.
C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).
Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103720
As it was discovered in post-commit feedback
for 0aa0458f14,
we handle thunks incorrectly, and end up annotating
their this/return with attributes that are valid
for their callees, not for thunks themselves.
While it would be good to fix this properly,
and keep annotating them on thunks,
i've tried doing that in https://reviews.llvm.org/D100388
with little success, and the patch is stuck for a month now.
So for now, as a stopgap measure, subj.
Commit 5baea05601 set the CurCodeDecl
because it was needed to pass the assert in CodeGenFunction::EmitLValueForLambdaField,
But this was not right to do as CodeGenFunction::FinishFunction passes it to EmitEndEHSpec
and cause corruption of the EHStack.
Revert the part of the commit that changes the CurCodeDecl, and instead
adjust the assert to check for a null CurCodeDecl.
Differential Revision: https://reviews.llvm.org/D102027
Commit e3d8ee35e4 ("reland "[DebugInfo] Support to emit debugInfo
for extern variables"") added support to emit debugInfo for
extern variables if requested by the target. Currently, only
BPF target enables this feature by default.
As BPF ecosystem grows, callback function started to get
support, e.g., recently bpf_for_each_map_elem() is introduced
(https://lwn.net/Articles/846504/) with a callback function as an
argument. In the future we may have something like below as
a demonstration of use case :
extern int do_work(int);
long bpf_helper(void *callback_fn, void *callback_ctx, ...);
long prog_main() {
struct { ... } ctx = { ... };
return bpf_helper(&do_work, &ctx, ...);
}
Basically bpf helper may have a callback function and the
callback function is defined in another file or in the kernel.
In this case, we would like to know the debuginfo types for
do_work(), so the verifier can proper verify the safety of
bpf_helper() call.
For the following example,
extern int do_work(int);
long bpf_helper(void *callback_fn);
long prog() {
return bpf_helper(&do_work);
}
Currently, there is no debuginfo generated for extern function do_work().
In the IR, we have,
...
define dso_local i64 @prog() local_unnamed_addr #0 !dbg !7 {
entry:
%call = tail call i64 @bpf_helper(i8* bitcast (i32 (i32)* @do_work to i8*)) #2, !dbg !11
ret i64 %call, !dbg !12
}
...
declare dso_local i32 @do_work(i32) #1
...
This patch added support for the above callback function use case, and
the generated IR looks like below:
...
declare !dbg !17 dso_local i32 @do_work(i32) #1
...
!17 = !DISubprogram(name: "do_work", scope: !1, file: !1, line: 1, type: !18, flags: DIFlagPrototyped, spFlags: DISPFlagOptimized, retainedNodes: !2)
!18 = !DISubroutineType(types: !19)
!19 = !{!20, !20}
!20 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
The TargetInfo.allowDebugInfoForExternalVar is renamed to
TargetInfo.allowDebugInfoForExternalRef as now it guards
both extern variable and extern function debuginfo generation.
Differential Revision: https://reviews.llvm.org/D100567
Default address space (applies when no explicit address space was
specified) maps to generic (4) address space.
Added SYCL named address spaces `sycl_global`, `sycl_local` and
`sycl_private` defined as sub-sets of the default address space.
Static variables without address space now reside in global address
space when compile for SPIR target, unless they have an explicit address
space qualifier in source code.
Differential Revision: https://reviews.llvm.org/D89909
This is a Clang-only change and depends on the existing "musttail"
support already implemented in LLVM.
The [[clang::musttail]] attribute goes on a return statement, not
a function definition. There are several constraints that the user
must follow when using [[clang::musttail]], and these constraints
are verified by Sema.
Tail calls are supported on regular function calls, calls through a
function pointer, member function calls, and even pointer to member.
Future work would be to throw a warning if a users tries to pass
a pointer or reference to a local variable through a musttail call.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D99517
This implements C-style type conversions for matrix types, as specified
in clang/docs/MatrixTypes.rst.
Fixes PR47141.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D99037
This removes some (but not all) uses of type-less CreateGEP()
and CreateInBoundsGEP() APIs, which are incompatible with opaque
pointers.
There are a still a number of tricky uses left, as well as many
more variation APIs for CreateGEP.
These are incompatible with opaque pointers. This is in preparation
of dropping this API on the IRBuilder side as well.
Instead explicitly pass the loaded type.
Currently clang uses stub function to launch kernel. This is inconvenient
to interop with C++ programs since the stub function has different name
as kernel, which is required by ROCm debugger.
This patch emits a variable symbol which has the same name as the kernel
and uses it to register and launch the kernel. This allows C++ program to
launch a kernel by using the original kernel name.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D86376
This patch responds to a comment from @vitalybuka in D96203: suggestion to
do the change incrementally, and start by modifying this file name. I modified
the file name and made the other changes that follow from that rename.
Reviewers: vitalybuka, echristo, MaskRay, jansvoboda11, aaron.ballman
Differential Revision: https://reviews.llvm.org/D96974
getAs<> can return null if the cast is invalid, which can lead to null pointer deferences. Use castAs<> instead which will assert that the cast is valid.
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.
Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)
The order is swapped, but in terms of correctness it is still fine.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93923
Sometimes people get minimal crash reports after a UBSAN incident. This change
tags each trap with an integer representing the kind of failure encountered,
which can aid in tracking down the root cause of the problem.
In C++ when a reference variable is captured by copy, the lambda
is supposed to make a copy of the referenced variable in the captures
and refer to the copy in the lambda. Therefore, it is valid to capture
a reference to a host global variable in a device lambda since the
device lambda will refer to the copy of the host global variable instead
of access the host global variable directly.
However, clang tries to avoid capturing of reference to a host global variable
if it determines the use of the reference variable in the lambda function is
not odr-use. Clang also tries to emit load of the reference to a global variable
as load of the global variable if it determines that the reference variable is
a compile-time constant.
For a device lambda to capture a reference variable to host global variable
and use the captured value, clang needs to be taught that in such cases the use of the reference
variable is odr-use and the reference variable is not compile-time constant.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D91088