- krait processor currently modeled with the same features as A9.
- Krait processor additionally has VFP4 (fused multiply add/sub)
and hardware division features enabled.
- krait has currently the same Schedule model as A9
- krait cpu flag is not recognized by the GNU assembler yet,
it is replaced with march=armv7-a to avoid a lower march
from being used.
llvm-svn: 196618
The integrated assembler was already the default for win32. It is now able
to handle a clang bootstrap on mingw, so make it the default.
llvm-svn: 195676
Clang still has support for running gcc for performing various stages
of a build. Right now it looks like this is used for
* Supporting Fortran in the clang driver
* Running an assembler or linker in systems we don't yet know how to
run them directly.
It looks like the gcc::Precompile is a vestige from the days when we
supported using clang for C and running gcc for c++. This patch removes it
(yes, we have no tests for it).
llvm-svn: 195586
This is currently unused by any test. The code path would still be hit
by clang on ppc, but
* PPC has not been supported on current versions of OS X
* A port of current clang to older OS X on ppc should be using
toolchains::DarwinClang.
llvm-svn: 195585
Clang knows how to use the gnu assembler directly from doing so on linux and
hurd. The existing support worked out of the box on cygwin and mingw and I was
able to bootstrap clang with it in both systems (with pending patches for the
new mingw abi, but that is independent of the assembler).
llvm-svn: 195554
Teach the '-arch' command line option to enable the compiler-friendly
features of core-avx2 CPUs on Darwin. Pass the information along in the
target triple like Darwin+ARM does.
llvm-svn: 194907
The thread, memory, dataflow and function sanitizers are now diagnosed if
enabled explicitly on an unsupported platform. Unsupported sanitizers which
are enabled implicitly (as part of a larger group) are silently disabled. As a
side effect, this makes SanitizerArgs parsing toolchain-dependent (and thus
essentially reverts r188058), and moves SanitizerArgs ownership to ToolChain.
Differential Revision: http://llvm-reviews.chandlerc.com/D1990
llvm-svn: 193875
which doesn't use that multilib. As a consequence, fix Clang's support
for cross compiling environments that were relying on this quirk to
ensure the correct library search path ordering.
This also re-instates the new test cases from Rafael's r193528 for
cross-compiling to ARM on Ubuntu 13.10 without any of the changes to the
existing test cases (they were no longer needed).
This solution was the result of a lot of IRC debugging and trying to
understand *exactly* what quirk was being relied upon. It took some time
for me to figure out that it was the use of 'lib32' is a multilib that
was throwing a wrench in the works.
In case you are thinking that its silly to use a multilib of 'lib' at
all, entertainingly, GCC does so as well (you can see it with the
.../lib/../lib/crt1.o pattern it uses), and the 2-phase sequence of
search paths (multilib followed by non-multilib) has observable (if
dubious) consequences. =/ Yuck.
llvm-svn: 193601
actually a MIPS-only hack to shim in random ABI directory suffixes in
numerous places throughout the toolchain's path search. It shouldn't
appear to be anything more general or useful.
llvm-svn: 193595
record what is *actually* going on here as the comments existing in the
code are confusing at best, and in places outright misleading.
The API is even more misleading. Yay.
llvm-svn: 193577
With this patch we correctly determine that ubuntu's ARM tree is not biarch
and use "lib" istead of "lib32".
Without this patch the search inside the arm tree for the crt files was failing
and we would end up trying to use the i686 ones in lib32.
llvm-svn: 193528
Adds some Cortex-A53 strings where they were missing before.
Cortex-A57 is entirely new to clang.
Doesn't touch code only used by Darwin, in consequence of which
one of the A53 lines has been removed.
Change-Id: I5edb58f6eae93947334787e26a8772c736de6483
llvm-svn: 193364
multi-library path suffix.
The code calculates MIPS toolchain specific multi-lib path suffixes like
mips16/soft-float/el is moved to the separate function
findMultiLibSuffix(). This function called during GCC installation
detection and result is stored for the future using.
The patch reviewed by Rafael Espindola.
http://llvm-reviews.chandlerc.com/D1738
llvm-svn: 191612
This patch turns the -mv* hexagon options into aliases. We should really produce
errors for invalid versions in the driver, but this patch preserves the old
behavior for now.
llvm-svn: 191298
Instead add the ASan runtime to the linker command line so that only the ASan API functions can be undefined in the target library.
Fixes http://llvm.org/bugs/show_bug.cgi?id=17275
llvm-svn: 191076
When sysroot is not set, look for libstdc++ first on the clang install
directory. Before this change if clang was installed alongside a gcc with
the same version as the system one we would select the system libstdc++.
Unfortunately this is hard to test as only the non-sysroot case is changed.
llvm-svn: 189536
which add another wrinkle to the installation of the libstdc++ headers.
Add at least some basic testing of the weirdnesses of Gentoo's layout.
llvm-svn: 189212
Summary:
This change turns SanitizerArgs into high-level options
stored in the Driver, which are parsed lazily. This fixes an issue of multiple copies of the same diagnostic message produced by sanitizer arguments parser.
Reviewers: rsmith
Reviewed By: rsmith
CC: chandlerc, eugenis, cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1341
llvm-svn: 188660
Otherwise it lists all files (e.g. shared libraries) that happen to be in the
same paths the GCC installations usually reside in.
On a x86_64 Debian 7 system with i386 multilibs.
before: clang -v 2>&1|wc -l
3059
after: clang -v 2>&1|wc -l
10
llvm-svn: 188400
Clang when linking and using a GCC installation from a GCC
cross-compiler.
This was desired already by two special case platforms (Android and
Mips), and turns out to be generally (if frustratingly) true. I've added
a substantial comment to the code clarifying the underlying assumptions
of doing actual cross compiles with Clang (or GCC for that matter!) and
help avoid further confusion here.
The end result is to realize that fully general form of PR12478 cannot
be resolved while we support existing cross-compiling GCC toolchains,
and linking with them (namely, linking against their libgcc and
libstdc++ installs). GCC installs these target libraries under
a target-specific prefix but one that may not be available within the
actual sysroot in use. When linking in this world, GCC works and Clang
should as well, but caveat emptor: DSOs from this tree must be
replicated and rpath-fixed to be found at runtime within the sysroot.
I've extended the cross compile test cases to cover these issues by
pointing them at a sysroot and actually checking the library search
paths.
llvm-svn: 187466
on the system, and report it when running the driver in verbose mode.
Without this it is essentially impossible to understand why a particular
GCC toolchain is used by Clang for libstdc++, libgcc, etc.
This also required threading a hook through the toolchain layers for
a specific toolchain implementation to print custom information under
'clang -v'. The naming here isn't spectacular. Suggestions welcome.
llvm-svn: 187427
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The new test case variant ensures that correct built-in defines for
little-endian code are generated.
llvm-svn: 187180