When code generating array index expressions the types of the different
components of the index expressions may not always match. We extend the type of
the index expression (if possible) and assert otherwise.
llvm-svn: 231592
The performance test case just committed was the last open issue I was aware of.
We enable this by default to increase test coverage and to possibly trigger
reports of issues yet unknown.
llvm-svn: 231590
The new Dependences struct in the DependenceInfo holds all information
that was formerly part of the DependenceInfo. It also provides the
same interface for the user to access this information.
This is another step to a more general ScopPass interface that does
allow multiple SCoPs to be "in flight".
llvm-svn: 231327
We rename the Dependences pass to DependenceInfo as a first step to a
caching pass policy. The new DependenceInfo pass will later provide
"Dependences" for a SCoP.
To keep consistency the test folder is renamed too.
llvm-svn: 231308
No test cases unfortunately as we do not yet generate isl_ast_op_and_then or
isl_ast_op_or_else. Those will be added in a later commit.
llvm-svn: 231268
If a scalar was defined and used only in a non-affine subregion we do
not need to model the accesses. However, if the scalar was defined
inside the region and escapes the region we have to model the access.
The same is true if the scalar was defined outside and used inside the
region.
llvm-svn: 230960
When we generate code for a whole region we have to respect dominance
and update it too.
The first is achieved with multiple "BBMap"s. Each copied block in the
region gets its own map. It is initialized only with values mapped in
the immediate dominator block, if this block is in the region and was
therefor already copied. This way no values defined in a block that
doesn't dominate the current one will be used.
To update dominance information we check if the immediate dominator of
the original block we want to copy is in the region. If so we set the
immediate dominator of the current block to the copy of the immediate
dominator of the original block.
llvm-svn: 230774
After a function was created we will verify it for Debug builds. If
errors are found and debug-type equals "polly-codegen-isl" the SCoP,
the isl AST, the function as well as the errors will be printed.
llvm-svn: 230767
isl recently introduced a new interface to create run-time checks from
constraint sets. Use this interface to simplify our run-time check generation.
llvm-svn: 230640
For Polly the two interesting changes are short_circuit && and || AST
expressions as well as the introduction of isl_ast_build_expr_from_set,
a well defined interface to compute ast expressions from constraint sets.
llvm-svn: 230636
With the patches r230325, r230329 and r230340 we can handle non-affine
control flow in (loop-free) subregions. As all LLVM test-suite tests pass and
we get ~20% more non-trivial SCoPs, we activate it now by default.
llvm-svn: 230624
This update contains:
- Fixes of minor issues detected by clang's scan_build
- More schedule tree infrastructure additions
This update slightly changes the output of our dependence analysis, but these
changes are purely syntactially.
llvm-svn: 230528
This is the code generation for region statements that are created
when non-affine control flow was present in the input. A new
generator, similar to the block or vector generator, for regions is
used to traverse and copy the region statement and to adjust the
control flow inside the new region in the end.
llvm-svn: 230340
This allows us to model non-affine regions in the SCoP representation.
SCoP statements can now describe either basic blocks or non-affine
regions. In the latter case all accesses in the region are accumulated
for the statement and write accesses, except in the entry, have to be
marked as may-write.
Differential Revision: http://reviews.llvm.org/D7846
llvm-svn: 230329
With this patch we allow the SCoP detection to detect regions as SCoPs
which have non-affine control flow inside. All non-affine regions are
tracked and later accessible to the ScopInfo.
As there is no real difference, non-affine branches as well as
floating point branches are covered (and both called non-affine
control flow). However, the detection is restricted to
overapproximate only loop free regions.
llvm-svn: 230325