Summary:
This also removes the need for atomic pseudo instructions, since
we select the correct encoding directly in SITargetLowering::lowerImage
for dimension-aware image intrinsics.
Mesa uses dimension-aware image intrinsics since
commit a9a7993441.
Change-Id: I7473d20009476a4ed6d919cae4e6dca9ff42e77a
Reviewers: arsenm, rampitec, mareko, tpr, b-sumner
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48167
llvm-svn: 335231
Summary:
Also explicitly port over some tests in llvm.amdgcn.image.* that were
missing. Some tests are removed because they no longer apply (i.e.
explicitly testing building an address vector via insertelement).
This is in preparation for the eventual removal of the old-style
intrinsics.
Some additional notes:
- constant-address-space-32bit.ll: change some GCN-NEXT to GCN because
the instruction schedule was subtly altered
- insert_vector_elt.ll: the old test didn't actually test anything,
because %tmp1 was not used; remove the load, because it doesn't work
(Because of the amdgpu_ps calling convention? In any case, it's
orthogonal to what the test claims to be testing.)
Change-Id: Idfa99b6512ad139e755e82b8b89548ab08f0afcf
Reviewers: arsenm, rampitec
Subscribers: MatzeB, qcolombet, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D48018
llvm-svn: 335229
Summary:
Having TableGen patterns for image intrinsics is hitting limitations:
for D16 we already have to manually pre-lower the packing of data
values, and we will have to do the same for A16 eventually.
Since there is already some custom C++ code anyway, it is arguably easier
to just do everything in C++, now that we can use the beefed-up generic
tables backend of TableGen to provide all the required metadata and map
intrinsics to corresponding opcodes. With this approach, all image
intrinsic lowering happens in SITargetLowering::lowerImage. That code is
dense due to all the cases that it handles, but it should still be easier
to follow than what we had before, by virtue of it all being done in a
single location, and by virtue of not relying on the TableGen pattern
magic that very few people really understand.
This means that we will have MachineSDNodes with MIMG instructions
during DAG combining, but that seems alright: previously we had
intrinsic nodes instead, but those are similarly opaque to the generic
CodeGen infrastructure, and the final pattern matching just did a 1:1
translation to machine instructions anyway. If anything, the fact that
we now merge the address words into a vector before DAG combine should
be an advantage.
Change-Id: I417f26bd88f54ce9781c1668acc01f3f99774de6
Reviewers: arsenm, rampitec, rtaylor, tstellar
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48017
llvm-svn: 335228
Summary:
Kill instructions sometimes do use SCC in unusual circumstances, when
v_cmpx cannot be used due to the operands that are involved.
Additionally, even if SCC was never defined by the expansion, kill pseudos
could previously occur between an s_cmp and an s_cbranch_scc, which breaks
the SCC liveness tracking when the pseudo is expanded to split the basic
block. While it would be possible to explicitly mark the SCC as live-in for
the successor basic block, it's simpler to just mark the pseudo as using SCC,
so that such a sequence is never emitted by instruction selection in the
first place.
A similar issue affects indirect source/dest pseudos in principle, although
I haven't been able to come up with a test case where it actually matters
(this affects instruction selection, so a MIR test can't be used).
Fixes: dEQP-GLES3.functional.shaders.discard.dynamic_loop_always
Change-Id: Ica8d82ecff1a763b892a1112cf1b06c948863a4f
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47761
llvm-svn: 335223
Summary:
This allows us to reduce the number of different machine instruction
opcodes, which reduces the table sizes and helps flatten the TableGen
multiclass hierarchies.
We can do this because for each hardware MIMG opcode, we have a full set
of IMAGE_xxx_Vn_Vm machine instructions for all required sizes of vdata
and vaddr registers. Instead of having separate D16 machine instructions,
a packed D16 instructions loading e.g. 4 components can simply use the
same V2 opcode variant that non-D16 instructions use.
We still require a TSFlag for D16 buffer instructions, because the
D16-ness of buffer instructions is part of the opcode. Renaming the flag
should help avoid future confusion.
The one non-obvious code change is that for gather4 instructions, the
disassembler can no longer automatically decide whether to use a V2 or
a V4 variant. The existing logic which choose the correct variant for
other MIMG instruction is extended to cover gather4 as well.
As a bonus, some of the assembler error messages are now more helpful
(e.g., complaining about a wrong data size instead of a non-existing
instruction).
While we're at it, delete a whole bunch of dead legacy TableGen code.
Change-Id: I89b02c2841c06f95e662541433e597f5d4553978
Reviewers: arsenm, rampitec, kzhuravl, artem.tamazov, dp, rtaylor
Subscribers: wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47434
llvm-svn: 335222
Summary:
Two utils methods have essentially the same functionality. This is an attempt to merge them into one.
1. lib/Transforms/Utils/Local.cpp : MergeBasicBlockIntoOnlyPred
2. lib/Transforms/Utils/BasicBlockUtils.cpp : MergeBlockIntoPredecessor
Prior to the patch:
1. MergeBasicBlockIntoOnlyPred
Updates either DomTree or DeferredDominance
Moves all instructions from Pred to BB, deletes Pred
Asserts BB has single predecessor
If address was taken, replace the block address with constant 1 (?)
2. MergeBlockIntoPredecessor
Updates DomTree, LoopInfo and MemoryDependenceResults
Moves all instruction from BB to Pred, deletes BB
Returns if doesn't have a single predecessor
Returns if BB's address was taken
After the patch:
Method 2. MergeBlockIntoPredecessor is attempting to become the new default:
Updates DomTree or DeferredDominance, and LoopInfo and MemoryDependenceResults
Moves all instruction from BB to Pred, deletes BB
Returns if doesn't have a single predecessor
Returns if BB's address was taken
Uses of MergeBasicBlockIntoOnlyPred that need to be replaced:
1. lib/Transforms/Scalar/LoopSimplifyCFG.cpp
Updated in this patch. No challenges.
2. lib/CodeGen/CodeGenPrepare.cpp
Updated in this patch.
i. eliminateFallThrough is straightforward, but I added using a temporary array to avoid the iterator invalidation.
ii. eliminateMostlyEmptyBlock(s) methods also now use a temporary array for blocks
Some interesting aspects:
- Since Pred is not deleted (BB is), the entry block does not need updating.
- The entry block was being updated with the deleted block in eliminateMostlyEmptyBlock. Added assert to make obvious that BB=SinglePred.
- isMergingEmptyBlockProfitable assumes BB is the one to be deleted.
- eliminateMostlyEmptyBlock(BB) does not delete BB on one path, it deletes its unique predecessor instead.
- adding some test owner as subscribers for the interesting tests modified:
test/CodeGen/X86/avx-cmp.ll
test/CodeGen/AMDGPU/nested-loop-conditions.ll
test/CodeGen/AMDGPU/si-annotate-cf.ll
test/CodeGen/X86/hoist-spill.ll
test/CodeGen/X86/2006-11-17-IllegalMove.ll
3. lib/Transforms/Scalar/JumpThreading.cpp
Not covered in this patch. It is the only use case using the DeferredDominance.
I would defer to Brian Rzycki to make this replacement.
Reviewers: chandlerc, spatel, davide, brzycki, bkramer, javed.absar
Subscribers: qcolombet, sanjoy, nemanjai, nhaehnle, jlebar, tpr, kbarton, RKSimon, wmi, arsenm, llvm-commits
Differential Revision: https://reviews.llvm.org/D48202
llvm-svn: 335183
Previously this folding was done only if select is a first operand.
However, for non-commutative operations constant may go before
select.
Differential Revision: https://reviews.llvm.org/D48223
llvm-svn: 335167
Summary: This patch originated from D46562 and is a proper subset, with some issues addressed.
Reviewers: spatel, hfinkel, wristow, arsenm, javed.absar
Reviewed By: spatel
Subscribers: wdng, nhaehnle
Differential Revision: https://reviews.llvm.org/D47909
llvm-svn: 334996
This is the common case in the BE when we serialize condition and then
rematerialize it. Use either original or inverted condition.
Differential Revision: https://reviews.llvm.org/D48246
llvm-svn: 334882
Summary: This patch originated from D46562 and is a proper subset, with some issues addressed.
Reviewers: spatel, hfinkel, wristow, arsenm
Reviewed By: spatel
Subscribers: wdng, nhaehnle
Differential Revision: https://reviews.llvm.org/D47954
llvm-svn: 334862
Try to access pieces 4 bytes at a time. This helps
various hasOneUse extract_vector_elt combines, such
as load width reductions.
Avoids test regressions in a future commit.
llvm-svn: 334836
Summary: The same pattern as D48010, but this one is IR-canonical as of D47428.
Reviewers: nhaehnle, bogner, tstellar, arsenm
Reviewed By: arsenm
Subscribers: arsenm, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #amdgpu
Differential Revision: https://reviews.llvm.org/D48012
llvm-svn: 334817
Summary:
As a followup for D48007.
Since we already handle `x << (bitwidth - y) >> (bitwidth - y)` pattern,
which does not have ub for both the edge cases (`y == 0`, `y == bitwidth`),
i think also handling a pattern that is ub for `y == bitwidth` should be fine.
Reviewers: nhaehnle, bogner, tstellar, arsenm
Reviewed By: arsenm
Subscribers: arsenm, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #amdgpu
Differential Revision: https://reviews.llvm.org/D48010
llvm-svn: 334816
Summary:
D47980 will canonicalize the `x << (32 - y) >> (32 - y)`,
which is the pattern the AMDGPU expects to `x & (-1 >> (32 - y))`,
which is not recognized by AMDGPU.
Thus, it needs to be recognized, too.
Reviewers: nhaehnle, bogner, tstellar, arsenm
Reviewed By: arsenm
Subscribers: arsenm, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #amdgpu
Differential Revision: https://reviews.llvm.org/D48007
llvm-svn: 334815
Currently the handle type is a global pointer which holds 8 bytes.
We need a larger type which hold 16 bytes, therefore change it
to [i64 x 2].
Differential Revision: https://reviews.llvm.org/D48094
llvm-svn: 334625
- Do not emit following assembler directives:
- .hsa_code_object_version
- .hsa_code_object_isa
- .amd_amdgpu_isa
- .amd_amdgpu_hsa_metadata
- .amd_amdgpu_pal_metadata
- Do not emit .note entries
- Cleanup and bring in sync kernel descriptor header file
- Emit kernel descriptor into .rodata with appropriate relocations and
alignments
llvm-svn: 334519
The use iterator, used within findMaskOperands(), can return anything which is
not a def. isUse() requires a register, so check isReg() before calling isUse().
Differential Revision: https://reviews.llvm.org/D48047
llvm-svn: 334459
Rational: if there is indirect access that is usually an issue
because load is not ready by the use. However, if use is inside a
loop and load is outside that is potentially an issue for a first
iteration only.
Differential Revision: https://reviews.llvm.org/D47740
llvm-svn: 334420
Summary:
The idiom recognition seems rather poor.
Only the `@bzhi32_d0` produces `v_bfe_u32`.
But they all should.
This needs to be fixed before D47980 can be re-landed.
Reviewers: mareko, bogner, rampitec, arsenm, tstellar, nhaehnle
Reviewed By: nhaehnle
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #amdgpu
Differential Revision: https://reviews.llvm.org/D48005
llvm-svn: 334398
AMDGPU inline assembler support i16, half and i128 typed variables in constraints, but they were reported as error.
Needed to fix https://github.com/RadeonOpenCompute/ROCm/issues/341,
e.g. to be able to load with global_load_dwordx4 to a 128bit integer variable
Differential Revision: https://reviews.llvm.org/D44920
llvm-svn: 334301
- Make code easier to maintain.
- Avoid generating waitcnts for VMEM if the address sppace does not involve VMEM.
- Add support to generate waitcnts for LDS and GDS memory.
Differential Revision: https://reviews.llvm.org/D47504
llvm-svn: 334241
This has two main components. First, widen
widen short constant loads in DAG when they have
the correct alignment. This is already done a bit in
AMDGPUCodeGenPrepare, since that has access to
DivergenceAnalysis. This can't help kernarg loads
created in the DAG. Start to use DAG divergence analysis
to help this case.
The second part is to avoid kernel argument lowering
breaking the alignment of short vector elements because
calling convention lowering wants to split everything
into legal register types.
When loading a split type, load the nearest 4-byte aligned
segment and shift to get the desired bits. This extra
load of the earlier argument piece ends up merging,
and the bit extract hopefully folds out.
There are a number of improvements and regressions with
this, but I think as-is this is a better compromise between
several of the worst parts of SelectionDAG.
Particularly when i16 is legal, this produces worse code
for i8 and i16 element vector kernel arguments. This is
partially due to the very weak load merging the DAG does.
It only looks for fairly specific combines between pairs
of loads which no longer appear. In particular this
causes v4i16 loads to be split into 2 components when
previously the two halves were merged.
Worse, because of the newly introduced shifts, there
is a lot more unnecessary vector packing and unpacking code
emitted. At least some of this is due to reporting
false for isTypeDesirableForOp for i16 as a workaround for
the lack of divergence information in the DAG. The cases
where this happens it doesn't actually matter, but the
relevant code in SimplifyDemandedBits doens't have the context
to know to ignore this.
The use of the scalar cache is probably more important
than the mess of mostly scalar instructions doing this packing
and unpacking. Future work can fix this, possibly by making better
use of the new DAG divergence information for controlling promotion
decisions, or adding another version of shift + trunc + shift
combines that doesn't only know about the used types.
llvm-svn: 334180
When denormals are supported we are producing a full division for
1.0f / x. That still can be replaced by the faster version:
bool c = fabs(x) > 0x1.0p+96f;
float s = c ? 0x1.0p-32f : 1.0f;
x *= s;
return s * v_rcp_f32(x)
in case if requested accuracy is 2.5ulp or less. The same version
is used if denormals are not supported for non 1.0 numerators, where
just v_rcp_f32 is then used for 1.0 numerator.
The optimization of 1/x is extended to the case -1/x, which is the
same except for the resulting sign bit.
OpenCL conformance passed with both enabled and disabled denorms.
Differential Revision: https://reviews.llvm.org/D47805
llvm-svn: 334142
Fixes terrible code on targets without f16 support. The
legalization creates a mess that is difficult to recover
from. Also should avoid randomly breaking these tests
multiple times in sequence in future commits.
Some regressions in cases where it happens to be better
to pull the source modifier after the conversion.
llvm-svn: 334132
Preserves the low bound of the !range. I don't think
it's legal to do anything with the top half since it's
theoretically reading garbage.
llvm-svn: 334045
When legalizing illegal FP load results, this was
for some reason dropping the invariant and dereferencable
memory flags. There doesn't seem to be any reason for this,
and the equivalent isn't done for integer loads.
Fixes an issue in a future AMDGPU commit where some identical
loads fail to merge because one of the loads ends up
dropping the flags.
llvm-svn: 334020
On GFX9 and earlier, flat memory ops may decrement VMCNT out-of-order as well as LGKMCNT out-of-order.
Differential Revision: https://reviews.llvm.org/D46616
llvm-svn: 333926
Memory clauses are formed into bundles in presence of xnack.
Their source operands are marked as early-clobber.
This allows to allocate distinct source and destination registers
within a clause and prevent breaking the clause with s_nop in the
hazard recognizer.
Clauses are undone before post-RA scheduler to allow some rescheduling,
which will not break the clause since artificial edges are created in
the dag to keep memory operations together. Yet this allows a better
ILP in some cases.
Differential Revision: https://reviews.llvm.org/D47511
llvm-svn: 333691
v2: use "ensureAlignment"
make functions cache line aligned
Fixes GPU hangs since r333219:
"AMDGPU: Split R600 AsmPrinter code into its own class"
Differential Revision: https://reviews.llvm.org/D47516
llvm-svn: 333622
This was just emitting loads with the ABI alignment
for the raw type. The true alignment is often better,
especially when an illegal vector type was scalarized.
The better alignment allows using a scalar load
more often.
llvm-svn: 333558
In terms of waitcnt insertion/if necessary, the waitcnt pass forces convergence
for a loop. Previously, that kicked if greater than 2 passes over a loop, which
doesn't account for loop with many bottom blocks. So, increase the threshold to
(n+1), where n is the number of bottom blocks. This gives the pass an
opportunity to consider the contribution of each bottom block, to the overall
loop, before the forced convergence potentially kicks in.
Differential Revision: https://reviews.llvm.org/D47488
llvm-svn: 333556
AFAIK the driver's allocation will actually have to round this
up anyway. It is useful to track the rounded up size, so that
the end of the kernel segment is known to be dereferencable so
a wider s_load_dword can be used for a short argument at the end
of the segment.
llvm-svn: 333456
Summary:
For a block with WQM on entry and exit and containing no exact mode
code, but containing some WWM code, the WQM pass forgot to process the
block at all and so did not insert code to enter and leave WWM.
This commit fixes that.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47027
Change-Id: I044792eead1293bed4203fb26ce75f47878afeb6
llvm-svn: 333362
With the removal of the old waitcnt pass, the '-enable-si-insert-waitcnts' option is obsolete. Remove it.
Differential Revision: https://reviews.llvm.org/D47378
llvm-svn: 333303
This is adoption of HSAIL perfhint pass. Two types of hints are produced:
1. Function is memory bound.
2. Kernel can use wave limiter.
Currently these hints are used in the scheduler. If a function is suspected
to be memory bound we allow occupancy to decrease to 4 waves in the course
of scheduling.
Differential Revision: https://reviews.llvm.org/D46992
llvm-svn: 333289
Summary:
Lower control flow did not correctly handle the case that a loop break
in if/else was on a condition that was not guaranteed to be masked by
exec. The first test kernel shows an example of this going wrong; after
exiting the loop, exec is all ones, even if it was not before the loop.
The fix is for lowering of if-break and else-break to insert an
S_AND_B64 to mask the break condition with exec. This commit also
includes the optimization of not inserting that S_AND_B64 if it is
obviously not needed because the break condition is the result of a
V_CMP in the same basic block.
V2: Addressed some review comments.
V3: Test fixes.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D44046
Change-Id: I0fc56a01209a9e99d1d5c9b0ffd16f111caf200c
llvm-svn: 333258
Summary:
StructurizeCFG::orderNodes basically uses a reverse post-order (RPO) traversal of the region list to get the order.
The only problem with it is that sometimes backedges for outer loops will be visited before backedges for inner loops.
To solve this problem, a loop depth based approach has been used to make sure all blocks in this loop has been visited
before moving on to outer loop.
However, we found a problem for a SubRegion which is a loop itself:
--> BB1 --> BB2 --> BB3 -->
In this case, BB2 is a SubRegion (loop), and thus its loopdepth is different than that of BB1 and BB3. This fact will lead
BB2 to be placed in the wrong order.
In this work, we treat the SubRegion as a special case and use its exit block to determine the loop and its depth
to guard the sorting.
Reviewers:
arsenm, jlebar
Differential Revision:
https://reviews.llvm.org/D46912
llvm-svn: 333111
The integer operation convertion for some reason only happens
if the source is a bitcast from an integer, which happens to
always be the situation when the result is loaded. Add
an additional pattern for when the source operation is really
an FP operation.
llvm-svn: 333019
This usually results in better code. Fixes using
inline asm with short2, and also fixes having a different
ABI for function parameters between VI and gfx9.
Partially cleans up the mess used for lowering of the d16
operations. Making v4f16 legal will help clean this up more,
but this requires additional work.
llvm-svn: 332953
This is the FP sibling of D43141 with the corresponding IR change in rL327212.
We can't propagate undef here because if a variable operand is a NaN, these
binops must propagate NaN. Neither global nor node-level fast-math makes a
difference. If we have 'nnan', I think later folds can turn the NaN into undef.
The tests in X86/fp-undef.ll are meant to be the definitive verification for
these folds - everything reduces identically now.
The other test changes are collateral damage. They may need to be altered to
preserve their intent.
Differential Revision: https://reviews.llvm.org/D47026
llvm-svn: 332920
Eliminate loads from the dispatch packet when they will have
a known value.
Also pattern match the code used by the library to handle partial
workgroup dispatches, which isn't necessary if reqd_work_group_size
is used.
llvm-svn: 332771
Summary:
The current StructurizeCFG pass only works for CFG with one exit. AMDGPUUnifyDivergentExitNodes combines multiple "return" blocks and/or "unreachable" blocks
to one exit block for the Structurizer to work. However, infinite loop is another kind of special "exit", and if we don't handle it, the case of multiple exits will prevent the structurizer from working.
In this work, for each infinite loop, we add a dummy edge to the "return" block, and thus the AMDGPUUnifyDivergentExitNodes pass will work with infinite loops.
This will make CFG with infinite loops be structurized.
Reviewer:
nhaehnle
Differential Revision:
https://reviews.llvm.org/D46340
llvm-svn: 332625
It is legal for the type passed to isLegalAddressingMode to be
unsized or, more specifically, VoidTy. In this case, we must
check the legality of load / stores for all legal types. Directly
trying to call getTypeStoreSize is incorrect, and leads to breakage
in e.g. Loop Strength Reduction. This change guards against that
behaviour.
Differential Revision: https://reviews.llvm.org/D40405
llvm-svn: 332409
We cannot query this attribute from a subtarget given a machine function.
At this point attribute itself is already unavailable and can only be
obtained through MFI.
Differential Revision: https://reviews.llvm.org/D46781
llvm-svn: 332166
Summary:
We have no logic to promote alloca to vector for an AddrSpaceCast instruction.
Reviewer:
arsenm
Differential Revision:
https://reviews.llvm.org/D45993
llvm-svn: 332147
Remove a useless SwitchSection which also causes compilation failure
when IR contains comdat.
The SwitchSection is useless because the current section is already
correct text section for the function therefore no need to switch.
It causes compilation failure for comdat because functions with comdat
has specific text section, not the default .text section.
Since HIP uses comdat, this bug caused failures for HIP.
Differential Revision: https://reviews.llvm.org/D46770
llvm-svn: 332137
If a multiply is truncated, SimplifyDemandedBits
sometimes turns a zero_extend of the inputs into an
any_extend, which makes the known bits computation unhelpful.
Ignore these and compute known bits for the underlying value,
since we insert the correct extend type after.
llvm-svn: 331919
This is an extension of an existing combine to reduce wider
shls if the result fits in the final result type. This
introduces the same combine, but reduces the shift to a middle
sized type to avoid the slow 64-bit shift.
llvm-svn: 331916
If the truncate is only accessing the first element of the vector,
we can use the original source value.
This helps with some combine ordering issues after operations are
lowered to integer operations between bitcasts of build_vector.
In particular it stops unnecessarily materializing the unused
top half of a vector in some cases.
llvm-svn: 331909
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Making sure we don't truncate / extend pointers, don't try to change
vector topology or bitcast vectors to scalars or back, and most
importantly, don't extend to a smaller type or truncate to a large
one.
Reviewers: qcolombet t.p.northover aditya_nandakumar
Reviewed By: qcolombet
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D46490
llvm-svn: 331718
Remove the old waitcnt pass ( si-insert-waits ), which is no longer maintained
and getting crufty
Differential Revision: https://reviews.llvm.org/D46448
llvm-svn: 331641
Summary:
Previously, all DS ops forced WQM in a pixel shader. That was a hack to
allow for graphics frontends using ds_swizzle to implement explicit
derivatives, on SI/CI at least where DPP is not available. But it forced
WQM for _any_ DS op.
With this commit, DS ops no longer force WQM. Both graphics frontends
(Mesa and LLPC) need to change to issue an explicit llvm.amdgcn.wqm
intrinsic call when calculating explicit derivatives.
The required Mesa change is: "amd/common: use llvm.amdgcn.wqm for
explicit derivatives".
Subscribers: qcolombet, arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D46051
Change-Id: I9b745b626fa91bbd66456e6cf41ee07eeea42f81
llvm-svn: 331633
As Roman Tereshin pointed out in https://reviews.llvm.org/D45541, the
-global-isel option is redundant when -run-pass is given. -global-isel sets up
the GlobalISel passes in the pass manager but -run-pass skips that entirely and
configures it's own pipeline.
llvm-svn: 331603
- Predicate D16 patterns on this new feature
- Added this new feature to gfx900/2/4
Differential Revision: https://reviews.llvm.org/D46366
llvm-svn: 331551
Summary: performAddCombine should run after DAG is legalized; Otherwise generic optimization
in the DAGCombiner can optimize an addcarry+trunc into an addcarry instruction with
illegal types.
Author: FarhanaAleen
Reviewed By: rampitec
Subscribers: llvm-commits, AMDGPU
Differential Revision: https://reviews.llvm.org/D46337
llvm-svn: 331368
- Add "amdgpu-waitcnt-forcezero" to force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)
- Add debug counters to control force emit of s_waitcnt instrs; debug counters:
si-insert-waitcnts-forceexp: force emit s_waitcnt expcnt(0) instrs
si-insert-waitcnts-forcevm: force emit s_waitcnt lgkmcnt(0) instrs
si-insert-waitcnts-forcelgkm: force emit s_waitcnt vmcnt(0) instrs
- Add some debug statements
Note that a variant of this patch was previously committed/reverted.
Differential Revision: https://reviews.llvm.org/D45888
llvm-svn: 330862
Debug var, expr and loc were only supported for non-fixed stack objects.
This patch adds the following fields to the "fixedStack:" entries, and
renames the ones from "stack:" to:
* debug-info-variable
* debug-info-expression
* debug-info-location
Differential Revision: https://reviews.llvm.org/D46032
llvm-svn: 330859
Summary: This is no longer used by mesa since its 18.0.0 release.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: arsenm, kzhuravl, wdng, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D45988
llvm-svn: 330775
If a packed inline constant is sign extended it must be truncated
after the shift. I.e. a constant (0xH0000, 0xHBC00), will be represented
as 0xFFFFFFFFBC000000 in the IR because the immediate is sign extended
to 64 bit. After the value shifted right by 16 to use it in a low part
with op_sel_hi it becomes 0xFFFFFFFFBC00 and does not qualify as inline
constant any longer.
Fixed the error and added verification code. Without the fix and with
the verification bug is causing pk_max_f16_literal.ll to fail.
Differential Revision: https://reviews.llvm.org/D45987
llvm-svn: 330752
It's possible to validly spill the frame offset register
in a call sequence to a VGPR. There are definitely issues
with SGPR spilling to memory, so move the assert later.
llvm-svn: 330612
Summary:
See the new test case; this is really unlikely to happen with real code,
but I ran into this while attempting to bugpoint-reduce a different issue.
Change-Id: I9ade1dc1aa8fd9c4d9fc83661d7b80e310b5c4a6
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D45885
llvm-svn: 330585
Summary:
This fixes a case where the argument to a sendmsg intrinsic
ends up in a VGPR, for whatever reason.
The underlying performance issue is that a multiplication that
can be an s_mul_i32 is instead needlessly generated as
v_mul_u32_u24, but this is not addressed by this patch.
Change-Id: I61fd4034314d5acdf6074632c30b65364dfa7328
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D45826
llvm-svn: 330393
We should also check that the "bottom" basic block of a loopis a successor of the "header" basic block, otherwise we don't propagate the information correctly when the CFG is complex. This fixes an important rendering problem with Wolfsentein 2, because of one vector-memory wait was missing.
Differential Revision: https://reviews.llvm.org/D43831
llvm-svn: 330337
Summary:
A change to use divergence analysis in the AMDGPU backend was getting formal
arguments incorrect (not tagged as divergent) unless they were VGPR0, VGPR1 or
VGPR2
For graphics shaders it is possible to have more than these passed in as VGPR
Modified the checking code to check for any VGPR registers passed in as formal
arguments.
Also, some intrinsics that are sources of divergence may have been lowered
during instruction selection and are missed on subsequent calls to
isSDNodeSourceOfDivergence - added the relevant AMDGPUISD checks as well.
Finally, the FunctionLoweringInfo tracks virtual registers that are live across
basic block boundaries. This is used to check for divergence of CopyFromRegister
registers using the DivergenceAnalysis analysis. For multiple blocks the lazily
evaluated inverted map VirtReg2Value was not cleared when the ValueMap map was.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D45372
Change-Id: I112f3bd6dfe0f62e63ce9b43b893982778e4bee3
llvm-svn: 330257
Summary:
This fixes the number of SGPRs and VGPRs in the *_RSRC1 register to
allow for registers set up in wave dispatch, even if those registers are
not used in the shader.
Re-landed after noticing that the buildbot failure from 329808 seemed to
be unrelated.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D45503
Change-Id: I6575f0e0d2a528d1319d0b289f0ebe4510fa5771
llvm-svn: 329826
Two issues were fixed:
runtime has difficulty to allocate memory for an external symbol of a
kernel and set the address of the external symbol, therefore make the runtime
handle of an enqueued kernel an ordinary global variable. Runtime only needs
to store the address of the loaded kernel to the handle and has verified
that this approach works.
handle the situation where __enqueue_kernel* gets inlined therefore
the enqueued kernel may be used through a constant expr instead
of an instruction.
Differential Revision: https://reviews.llvm.org/D45187
llvm-svn: 329815
This reverts 329808. That change caused a report of a failure in
test/CodeGen/MIR/AMDGPU/mir-canon-multi.mir that I didn't see. I suspect
it is an expensive-check-only error.
Change-Id: I8133f26f15e7d5ec2b09c687c12cd70e918461b0
llvm-svn: 329811
Summary:
This fixes the number of SGPRs and VGPRs in the *_RSRC1 register to
allow for registers set up in wave dispatch, even if those registers are
not used in the shader.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D45503
Change-Id: I6575f0e0d2a528d1319d0b289f0ebe4510fa5771
llvm-svn: 329808
Author: Samuel Pitoiset
ds_read_b128 and ds_write_b128 have been recently enabled
under the amdgpu-ds128 option because the performance benefit
is unclear.
Though, using 128-bit loads/stores for the local address space
appears to introduce regressions in tessellation shaders. Not
sure what is broken, but as ds_read_b128/ds_write_b128 are not
enabled by default, just introduce a global option and enable
128-bit only if requested (until it's fixed/used correctly).
v2: - fix regressions in merge-stores.ll and multiple_tails.ll
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=105464
llvm-svn: 329764
Summary:
For OS type AMDPAL, the scratch descriptor is loaded from offset 0 of
the GIT, whose 32 bit pointer is in s0 (s8 for gfx9 merged shaders).
This commit fixes that to use offset 0x10 instead of offset 0 for a
compute shader, per the PAL ABI spec.
V2: Ensure s0 (s8 for gfx9 merged shader) is marked live-in when loading
scratch descriptor from GIT.
Reviewers: kzhuravl, nhaehnle, timcorringham
Subscribers: kzhuravl, wdng, yaxunl, t-tye, llvm-commits, dstuttard, nhaehnle, arsenm
Differential Revision: https://reviews.llvm.org/D44468
Change-Id: I93dffa647758e37f613bb5e0dfca840d82e6d26f
llvm-svn: 329690
Author: Samuel Pitoiset
ds_read_b128 and ds_write_b128 have been recently enabled
under the amdgpu-ds128 option because the performance benefit
is unclear.
Though, using 128-bit loads/stores for the local address space
appears to introduce regressions in tessellation shaders. Not
sure what is broken, but as ds_read_b128/ds_write_b128 are not
enabled by default, just introduce a global option and enable
128-bit only if requested (until it's fixed/used correctly).
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=105464
llvm-svn: 329591
Currently it is 6. If the "feature" was not used, report dummy
hidden argument. Otherwise it does not match the kernarg size
reported in the kernel header.
Differential Revision: https://reviews.llvm.org/D45129
llvm-svn: 329341
Summary:
These new image intrinsics contain the texture type as part of
their name and have each component of the address/coordinate as
individual parameters.
This is a preparatory step for implementing the A16 feature, where
coordinates are passed as half-floats or -ints, but the Z compare
value and texel offsets are still full dwords, making it difficult
or impossible to distinguish between A16 on or off in the old-style
intrinsics.
Additionally, these intrinsics pass the 'texfailpolicy' and
'cachectrl' as i32 bit fields to reduce operand clutter and allow
for future extensibility.
v2:
- gather4 supports 2darray images
- fix a bug with 1D images on SI
Change-Id: I099f309e0a394082a5901ea196c3967afb867f04
Reviewers: arsenm, rampitec, b-sumner
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D44939
llvm-svn: 329166
Summary:
When an i1-value is defined inside of a loop and used outside of it, we
cannot simply use the SGPR bitmask from the loop's last iteration.
There are also useful and correct cases of an i1-value being copied between
basic blocks, e.g. when a condition is computed outside of a loop and used
inside it. The concept of dominators is not sufficient to capture what is
going on, so I propose the notion of "lane-dominators".
Fixes a bug encountered in Nier: Automata.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=103743
Change-Id: If37b969ddc71d823ab3004aeafb9ea050e45bd9a
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, mgorny, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D40547
llvm-svn: 329164
Summary: There are no packed instructions for min3 or max3. So, performMinMaxCombine should not optimize vectors of f16 to min3/max3.
Author: FarhanaAleen
Reviewed By: arsenm
Subscribers: llvm-commits, AMDGPU
Differential Revision: https://reviews.llvm.org/D45219
llvm-svn: 329131
Summary:
The phase attempts to transform operations that extract a portion of a value
into an SDWA src operand in cases where that value is used only once. It
was not prepared for this use to be the preserved portion of a value for
dst:UNUSED_PRESERVE, resulting in a crash or assert.
This change either rejects the illegal SDWA attempt, or in the case where
dst:WORD_1 and the src_sel would be WORD_0, removes the unneeded
extract instruction.
Reviewers: arsenm, #amdgpu
Reviewed By: arsenm, #amdgpu
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D44364
llvm-svn: 328856
While the stack access instructions don't care about
alignment > 4, some transformations on the pointer calculation
do make assumptions based on knowing the low bits of a pointer
are 0. If a stack object ends up being accessed through its
absolute address (relative to the kernel scratch wave offset),
the addressing expression may depend on the stack frame being
properly aligned. This was breaking in a testcase due to the
add->or combine.
I think some of the SP/FP handling logic is still backwards,
and overly simplistic to support all of the stack features.
Code which tries to modify the SP with inline asm for example
or variable sized objects will probably require redoing this.
llvm-svn: 328831
This reverts commit 0daf86291d3aa04d3cc280cd0ef24abdb0174981.
It was causing an assert in test/CodeGen/AMDGPU/amdpal.ll only on a
release-with-asserts build. I will resubmit the change when I have fixed
that.
Change-Id: If270594eba27a7dc4076bdeab3fa8e6bfda3288a
llvm-svn: 328695
Summary:
For OS type AMDPAL, the scratch descriptor is loaded from offset 0 of
the GIT, whose 32 bit pointer is in s0 (s8 for gfx9 merged shaders).
This commit fixes that to use offset 0x10 instead of offset 0 for a
compute shader, per the PAL ABI spec.
Reviewers: kzhuravl, nhaehnle, timcorringham
Subscribers: kzhuravl, wdng, yaxunl, t-tye, llvm-commits, dstuttard, nhaehnle, arsenm
Differential Revision: https://reviews.llvm.org/D44468
Change-Id: I93dffa647758e37f613bb5e0dfca840d82e6d26f
llvm-svn: 328673
Summary:
Rev 327580 "[CodeGen] Use MIR syntax for MachineMemOperand printing"
broke -print-machineinstrs for us on AMDGPU, because we have custom
pseudo source values, and MIR serialization does not implement that.
This commit at least restores the functionality of -print-machineinstrs,
even if it does not properly implement the missing MIR serialization
functionality.
Differential Revision: https://reviews.llvm.org/D44871
Change-Id: I44961c0b90bf6d48c01484ed7a4e466fd300db66
llvm-svn: 328668
Before this was not done if the function had no calls in it. This
is still a possible issue with any callable function, regardless
of calls present.
llvm-svn: 328659
The combine on a select of a load only triggers for
addrspace 0, and discards the MachinePointerInfo. The
conservative default needs to be used for this.
llvm-svn: 328652
In a function, s5 is used as the frame base SGPR. If a function
is calling another function, during the call sequence
it is copied to a preserved SGPR and restored.
Before it was possible for the scheduler to move stack operations
before the restore of s5, since there's nothing to associate
a frame index access with the restore.
Add an implicit use of s5 to the adjcallstack pseudo which ends
the call sequence to preven this from happening. I'm not 100%
satisfied with this solution, but I'm not sure what else would be
better.
llvm-svn: 328650
Add two additional implicit arguments for OpenCL for the AMDGPU target using the AMDHSA runtime to support device enqueue.
Differential Revision: https://reviews.llvm.org/D44697
llvm-svn: 328351
- Remove use of the opencl and amdopencl environment member of the target triple for the AMDGPU target.
- Use function attribute to communicate to the AMDGPU backend to add implicit arguments for OpenCL kernels for the AMDHSA OS.
Differential Revision: https://reviews.llvm.org/D43736
llvm-svn: 328349
Normally DCE kills these, but at -O0 these get left behind
leaving suspicious looking illegal copies.
Replace with IMPLICIT_DEF to avoid iterator issues.
llvm-svn: 327842
Get rid of the "; mem:" suffix and use the one we use in MIR: ":: (load 2)".
rdar://38163529
Differential Revision: https://reviews.llvm.org/D42377
llvm-svn: 327580
Since the enqueued kernels have internal linkage, their names may be dropped.
In this case, give them unique names __amdgpu_enqueued_kernel or
__amdgpu_enqueued_kernel.n where n is a sequential number starting from 1.
Differential Revision: https://reviews.llvm.org/D44322
llvm-svn: 327291
Summary: Starting from GCN 2nd generation, ISA supports ds_read_b128 on top of ds_read_b64.
This patch supports ds_read_b128 instruction pattern and generation of this instruction.
In the vectorizer, this patch also widen the vector length so that vectorizer generates
128 bit loads for local address-space which gets translated to ds_read_b128.
Since the performance benefit is not clear; compiler generates ds_read_b128 under -amdgpu-ds128.
Author: FarhanaAleen
Reviewed By: rampitec, arsenm
Subscribers: llvm-commits, AMDGPU
Differential Revision: https://reviews.llvm.org/D44210
llvm-svn: 327153
Summary: GCN ISA supports instructions that can read 16 consecutive dwords from memory through the scalar data cache;
loadstoreVectorizer should take advantage of the wider vector length and pack 16/8 elements of dwords/quadwords.
Author: FarhanaAleen
Reviewed By: rampitec
Subscribers: llvm-commits, AMDGPU
Differential Revision: https://reviews.llvm.org/D44179
llvm-svn: 326910
One addrspacecast disappeared in clang emitted IR for
block invoke function due to adoption of the new
addr space mapping.
Differential Revision: https://reviews.llvm.org/D43785
llvm-svn: 326806
i16 capable ASICs do not support i16 operands for this instruction.
Add tablegen pattern to merge chained i16 additions.
Differential Revision: https://reviews.llvm.org/D43985
llvm-svn: 326535