This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Remove another bit of unused configuration potential from GCStrategy. It's not entirely clear what the intention here was, but from the docs, it sounds like this may have been subsumed by patchable call support.
Note: This change is deliberately small to make it clear that while implemented, there's nothing using the option. A following NFC will do most of the simplifications.
llvm-svn: 346701
The GCStrategy provides three configuration options were are largely redundant.
1) Support for conditionally lowering gcread and gcwrite to loads and stores. This is redundant since any GC which wished to use these abstractions would lower them out of existance before the built in lowering anyways. As such, there's no need to have the lowering being conditional.
2) Conditional initialization for allocas marked via gcroot. Semantically, roots have to be initialized before first potential use. Arguably, the frontend really should have responsibility for that, but the old API allowed the frontend to ignore this detail. Only one builtin GC used the non-initializing mode. Since no one to my knowledge actually uses the ErlangGC strategy, I decide the slight pessimization was worth the simplicity. If that turns out to be problematic, we can always improve the insertion algorithm to detect more existing initializing stores.
llvm-svn: 346621
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
function.
This was the same as getFrameIndexReference, but without the FrameReg
output.
Differential Revision: http://reviews.llvm.org/D12042
llvm-svn: 245148
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Now that Intrinsic::ID is a typed enum, we can forward declare it and so return it from this method.
This updates all users which were either using an unsigned to store it, or had a now unnecessary cast.
llvm-svn: 237810
I'm playing with supporting custom stack map formats with statepoints. While
doing so, I noticed that the existing implementation didn't indicate inherently
unsized frames. This change essentially just ports the functionality that already
exists for the default StackMaps section to custom stackmaps.
llvm-svn: 233891
This is a refactoring to restructure the single user of performCustomLowering as a specific lowering pass and remove the custom lowering hook entirely.
Before this change, the LowerIntrinsics pass (note to self: rename!) was essentially acting as a pass manager, but without being structured in terms of passes. Instead, it proxied calls to a set of GCStrategies internally. This adds a lot of conceptual complexity (i.e. GCStrategies are stateful!) for very little benefit. Since there's been interest in keeping the ShadowStackGC working, I extracting it's custom lowering pass into a dedicated pass and just added that to the pass order. It will only run for functions which opt-in to that gc.
I wasn't able to find an easy way to preserve the runtime registration of custom lowering functionality. Given that no user of this exists that I'm aware of, I made the choice to just remove that. If someone really cares, we can look at restoring it via dynamic pass registration in the future.
Note that despite the large diff, none of the lowering code actual changes. I added the framing needed to make it a pass and rename the class, but that's it.
Differential Revision: http://reviews.llvm.org/D7218
llvm-svn: 227351
This change reverts the interesting parts of 226311 (and 227046). This change introduced two problems, and I've been convinced that an alternate approach is preferrable anyways.
The bugs were:
- Registery appears to require all users be within the same linkage unit. After this change, asking for "statepoint-example" in Transform/ would sometimes get you nullptr, whereas asking the same question in CodeGen would return the right GCStrategy. The correct long term fix is to get rid of the utter hack which is Registry, but I don't have time for that right now. 227046 appears to have been an attempt to fix this, but I don't believe it does so completely.
- GCMetadataPrinter::finishAssembly was being called more than once per GCStrategy. Each Strategy was being added to the GCModuleInfo multiple times.
Once I get time again, I'm going to split GCModuleInfo into the gc.root specific part and a GCStrategy owning Analysis pass. I'm probably also going to kill off the Registry. Once that's done, I'll move the new GCStrategyAnalysis and all built in GCStrategies into Analysis. (As original suggested by Chandler.) This will accomplish my original goal of being able to access GCStrategy from Transform/ without adding all of the builtin GCs to IR/.
llvm-svn: 227109
Note: This change ended up being slightly more controversial than expected. Chandler has tentatively okayed this for the moment, but I may be revisiting this in the near future after we settle some high level questions.
Rather than have the GCStrategy object owned by the GCModuleInfo - which is an immutable analysis pass used mainly by gc.root - have it be owned by the LLVMContext. This simplifies the ownership logic (i.e. can you have two instances of the same strategy at once?), but more importantly, allows us to access the GCStrategy in the middle end optimizer. To this end, I add an accessor through Function which becomes the canonical way to get at a GCStrategy instance.
In the near future, this will allows me to move some of the checks from http://reviews.llvm.org/D6808 into the Verifier itself, and to introduce optimization legality predicates for some of the recent additions to InstCombine. (These will follow as separate changes.)
Differential Revision: http://reviews.llvm.org/D6811
llvm-svn: 226311
Searching all of the existing gc.root implementations I'm aware of (all three of them), there was exactly one use of this mechanism, and that was to implement a performance improvement that should have been applied to the default lowering.
Having this function is requiring a dependency on a CodeGen class (MachineFunction), in a class which is otherwise completely independent of CodeGen. I could solve this differently, but given that I see absolutely no value in preserving this mechanism, I going to just get rid of it.
Note: Tis is the first time I'm intentionally breaking previously supported gc.root functionality. Given 3.6 has branched, I believe this is a good time to do this.
Differential Revision: http://reviews.llvm.org/D7004
llvm-svn: 226305
Use static functions for helpers rather than static member functions. a) this changes the linking (minor at best), and b) this makes it obvious no object state is involved.
llvm-svn: 226198
This preparation for an update to http://reviews.llvm.org/D6811. GCStrategy.cpp will hopefully be moving into IR/, where as the lowering logic needs to stay in CodeGen/
llvm-svn: 226195