Trying to activate both LLVM and MLIR passes in mlir-cpu-runner showed name collisions when registering pass names.
One possible way of disambiguating that should also work across dialects is to prepend the dialect name to the passes that specifically operate on that dialect.
With this CL, mlir-cpu-runner tests still run when both LLVM and MLIR passes are registered
--
PiperOrigin-RevId: 246539917
* dyn_cast_or_null
- This will first check if the operation is null before trying to 'dyn_cast':
Value *v = ...;
if (auto forOp = dyn_cast_or_null<AffineForOp>(v->getDefiningOp()))
...
* isa_nonnull
- This will first check if the pointer is null before trying to 'isa':
Value *v = ...;
if (isa_nonnull<AffineForOp>(v->getDefiningOp());
...
--
PiperOrigin-RevId: 242171343
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators. This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.
Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation. For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format. The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.
Update transformations to account for the presence of terminator. In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.
PiperOrigin-RevId: 240536998
a pointer. This makes it consistent with all the other methods in
FunctionPass, as well as with ModulePass::getModule(). NFC.
PiperOrigin-RevId: 240257910
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().
This removes another 200 lines of code.
PiperOrigin-RevId: 240068113
- this is really not a hard error; emit a warning instead (for inability to compute
footprint due to the union failing due to unimplemented cases)
- remove a misleading warning from LoopFusion.cpp
PiperOrigin-RevId: 238118711
- compute tile sizes based on a simple model that looks at memory footprints
(instead of using the hardcoded default value)
- adjust tile sizes to make them factors of trip counts based on an option
- update loop fusion CL options to allow setting maximal fusion at pass creation
- change an emitError to emitWarning (since it's not a hard error unless the client
treats it that way, in which case, it can emit one)
$ mlir-opt -debug-only=loop-tile -loop-tile test/Transforms/loop-tiling.mlir
test/Transforms/loop-tiling.mlir:81:3: note: using tile sizes [4 4 5 ]
for %i = 0 to 256 {
for %i0 = 0 to 256 step 4 {
for %i1 = 0 to 256 step 4 {
for %i2 = 0 to 250 step 5 {
for %i3 = #map4(%i0) to #map11(%i0) {
for %i4 = #map4(%i1) to #map11(%i1) {
for %i5 = #map4(%i2) to #map12(%i2) {
%0 = load %arg0[%i3, %i5] : memref<8x8xvector<64xf32>>
%1 = load %arg1[%i5, %i4] : memref<8x8xvector<64xf32>>
%2 = load %arg2[%i3, %i4] : memref<8x8xvector<64xf32>>
%3 = mulf %0, %1 : vector<64xf32>
%4 = addf %2, %3 : vector<64xf32>
store %4, %arg2[%i3, %i4] : memref<8x8xvector<64xf32>>
}
}
}
}
}
}
PiperOrigin-RevId: 237461836
Adds utility to convert slice bounds to a FlatAffineConstraints representation.
Adds utility to FlatAffineConstraints to promote loop IV symbol identifiers to dim identifiers.
PiperOrigin-RevId: 236973261
- change this for consistency - everything else similar takes/returns a
Function pointer - the FuncBuilder ctor,
Block/Value/Instruction::getFunction(), etc.
- saves a whole bunch of &s everywhere
PiperOrigin-RevId: 236928761
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:
<full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}
Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.
Purely mechanical. NFC.
PiperOrigin-RevId: 236371358
*) Breaks fusion pass into multiple sub passes over nodes in data dependence graph:
- first pass fuses single-use producers into their unique consumer.
- second pass enables fusing for input-reuse by fusing sibling nodes which read from the same memref, but which do not share dependence edges.
- third pass fuses remaining producers into their consumers (Note that the sibling fusion pass may have transformed a producer with multiple uses into a single-use producer).
*) Fusion for input reuse is enabled by computing a sibling node slice using the load/load accesses to the same memref, and fusion safety is guaranteed by checking that the sibling node memref write region (to a different memref) is preserved.
*) Enables output vector and output matrix computations from KFAC patches-second-moment operation to fuse into a single loop nest and reuse input from the image patches operation.
*) Adds a generic loop utilitiy for finding all sequential loops in a loop nest.
*) Adds and updates unit tests.
PiperOrigin-RevId: 236350987
LoopFusion
- getConstDifference in LoopFusion is pending a refactoring to handle bounds
with min's and max's; it currently asserts on some useful test cases that we
want to experiment with. This CL changes getSliceBounds to be more
conservative so as to not trigger the assertion. Filed b/126426796 to track this.
PiperOrigin-RevId: 235826538
- clean up loop fusion CL options for promoting local buffers to fast memory
space
- add parameters to loop fusion pass instantiation
PiperOrigin-RevId: 235813419
Analysis - NFC
- refactor AffineExprFlattener (-> SimpleAffineExprFlattener) so that it
doesn't depend on FlatAffineConstraints, and so that FlatAffineConstraints
could be moved out of IR/; the simplification that the IR needs for
AffineExpr's doesn't depend on FlatAffineConstraints
- have AffineExprFlattener derive from SimpleAffineExprFlattener to use for
all Analysis/Transforms purposes; override addLocalFloorDivId in the derived
class
- turn addAffineForOpDomain into a method on FlatAffineConstraints
- turn AffineForOp::getAsValueMap into an AffineValueMap ctor
PiperOrigin-RevId: 235283610
- compute slices precisely where the destination iteration depends on multiple source
iterations (instead of over-approximating to the whole source loop extent)
- update unionBoundingBox to deal with input with non-matching symbols
- reenable disabled backend test case
PiperOrigin-RevId: 234714069
*) Adds utility to LoopUtils to perform loop interchange of two AffineForOps.
*) Adds utility to LoopUtils to sink a loop to a specified depth within a loop nest, using a series of loop interchanges.
*) Computes dependences between all loads and stores in the loop nest, and classifies each loop as parallel or sequential.
*) Computes loop interchange permutation required to sink sequential loops (and raise parallel loop nests) while preserving relative order among them.
*) Checks each dependence against the permutation to make sure that dependences would not be violated by the loop interchange transformation.
*) Calls loop interchange in LoopFusion pass on consumer loop nests before fusing in producers, sinking loops with loop carried dependences deeper into the consumer loop nest.
*) Adds and updates related unit tests.
PiperOrigin-RevId: 234158370