for extreme large case.
We had a case that a single loop which has 4000 exits and the average number
of predecessors of each exit is > 1000, and we found compiling the case spent
a significant amount of time on checking whether a loop has dedicated exits.
This patch adds a limit for the iterations to the check. With the patch, the
time to compile our testcase reduced from 1000s to 200s (clang release build).
Differential Revision: https://reviews.llvm.org/D67359
llvm-svn: 372990
Summary:
FlattenCFG merges two 'if' basicblocks by inserting one basicblock
to another basicblock. The inserted basicblock can have a successor
that contains a PHI node whoes incoming basicblock is the inserted
basicblock. Since the existing code does not handle it, it becomes
a badref.
if (cond1)
statement
if (cond2)
statement
successor - contains PHI node whose predecessor is cond2
-->
if (cond1 || cond2)
statement
(BB for cond2 was deleted)
successor - contains PHI node whose predecessor is cond2 --> bad ref!
Author: Jaebaek Seo
Reviewers: asbirlea, kuhar, tstellar, chandlerc, davide, dexonsmith
Reviewed By: kuhar
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68032
llvm-svn: 372989
Summary:
This was found during review of https://reviews.llvm.org/D66050.
In the simple test of fdiv, we miss to fold
```
fneg 2, 2
xsmaddasp 3, 2, 0
```
to
```
xsnmsubasp 3, 2, 0
```
We have the patterns for Double Precision and vectors, just missing
Single Precision, the patch add that.
Reviewers: #powerpc, hfinkel, nemanjai, steven.zhang
Reviewed By: #powerpc, steven.zhang
Subscribers: wuzish, hiraditya, kbarton, MaskRay, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67595
llvm-svn: 372985
llvm/test/Object/ contains tests for the ArchiveWriter library, however
support for MRI scripts is found in llvm-ar and not the library. This
diff moves the MRI related tests and removes those that are duplicates.
Differential Revision: https://reviews.llvm.org/D68038
llvm-svn: 372973
Summary:
Removing an assumption (assert) that the CmpInst already has been
simplified in getFlippedStrictnessPredicateAndConstant. Solution is
to simply bail out instead of hitting the assertion. Instead we
assume that any profitable rewrite will happen in the next iteration
of InstCombine.
The reason why we can't assume that the CmpInst already has been
simplified is that the worklist does not guarantee such an ordering.
Solves https://bugs.llvm.org/show_bug.cgi?id=43376
Reviewers: spatel, lebedev.ri
Reviewed By: lebedev.ri
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68022
llvm-svn: 372972
Implement aggregate structure split to simpler types in splitToValueTypes.
splitToValueTypes is used for return values.
According to MipsABIInfo from clang/lib/CodeGen/TargetInfo.cpp,
aggregate structure arguments for O32 always get simplified and thus
will remain unsupported by the MIPS GlobalISel for the time being.
For O32, aggregate structures can be encountered only for complex number
returns e.g. 'complex float' or 'complex double' from <complex.h>.
Differential Revision: https://reviews.llvm.org/D67963
llvm-svn: 372957
SLM is 2 x slower for <2 x i64> comparison ops than other vector types, we should account for this like we do for SLM <2 x i64> add/sub/mul costs.
This should remove some of the SLM codegen diffs in D43582
llvm-svn: 372954
With -pg -mfentry -mnop-mcount, a nop is emitted instead of the call to
fentry.
Review: Ulrich Weigand
https://reviews.llvm.org/D67765
llvm-svn: 372950
Summary:
Previously the case
EBB
| \_
| |
| TBB
| /
FBB
was treated as a valid triangle also when TBB and FBB was the same basic
block. This could then lead to an invalid CFG when we removed the edge
from EBB to TBB, since that meant we would also remove the edge from EBB
to FBB.
Since TBB == FBB is quite a degenerated case of a triangle, we now
don't treat it as a valid triangle anymore, and thus we will avoid the
trouble with updating the CFG.
Reviewers: efriedma, dmgreen, kparzysz
Reviewed By: efriedma
Subscribers: bjope, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67832
llvm-svn: 372943
atomicrmw and cmpxchg have a volatile flag, so allow them to be get and set with LLVM{Get,Set}Volatile. atomicrmw and fence have orderings, so allow them to be get and set with LLVM{Get,Set}Ordering. Add missing LLVMAtomicRMWBinOpFAdd and LLVMAtomicRMWBinOpFSub enum constants. AtomicCmpXchg also has a weak flag, add a getter/setter for that too. Add a getter/setter for the binary-op of an atomicrmw.
atomicrmw and cmpxchg have a volatile flag, so allow it to be set/get with LLVMGetVolatile and LLVMSetVolatile. Add missing LLVMAtomicRMWBinOpFAdd and LLVMAtomicRMWBinOpFSub enum constants. AtomicCmpXchg also has a weak flag, add a getter/setter for that too. Add a getter/setter for the binary-op of an atomicrmw.
Add LLVMIsA## for CatchSwitchInst, CallBrInst and FenceInst, as well as AtomicCmpXchgInst and AtomicRMWInst.
Update llvm-c-test to include atomicrmw and fence, and to copy volatile for the four applicable instructions.
Differential Revision: https://reviews.llvm.org/D67132
llvm-svn: 372938
Previously we had an assert but this can actually occur in valid user
code so we need to handle this in release builds too.
Differential Revision: https://reviews.llvm.org/D67997
llvm-svn: 372934
Summary:
If a block has all incoming values with the same MemoryAccess (ignoring
incoming values from unreachable blocks), then use that incoming
MemoryAccess and do not create a Phi in the first place.
Revert IDF work-around added in rL372673; it should not be required unless
the Def inserted is the first in its block.
The patch also cleans up a series of tests, added during the many
iterations on insertDef.
The patch also fixes PR43438.
The same issue that occurs in insertDef with "adding phis, hence the IDF of
Phis is needed", can also occur in fixupDefs: the `getPreviousRecursive`
call only adds Phis walking on the predecessor edges, which means there
may be the case of a Phi added walking the CFG "backwards" which
triggers the needs for an additional Phi in successor blocks.
Such Phis are added during fixupDefs only in the presence of unreachable
blocks.
Hence this highlights the need to avoid adding Phis in blocks with
unreachable predecessors in the first place.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67995
llvm-svn: 372932
Summary:
The list of indirect labels should ALWAYS have their blockaddresses as
argument operands to the callbr (but not necessarily the other way
around). Add an invariant that checks this.
The verifier catches a bad test case that was added recently in r368478.
I think that was a simple mistake, and the test was made less strict in
regards to the precise addresses (as those weren't specifically the
point of the test).
This invariant will be used to find a reported bug.
Link: https://www.spinics.net/lists/arm-kernel/msg753473.html
Link: https://github.com/ClangBuiltLinux/linux/issues/649
Reviewers: craig.topper, void, chandlerc
Reviewed By: void
Subscribers: ychen, lebedev.ri, javed.absar, kristof.beyls, hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67196
llvm-svn: 372923
Because we do not constant fold multiplications in SimplifyFMAMul,
we match 1.0 and 0.0 for both operands, as multiplying by them
is guaranteed to produce an exact result (if it is allowed to do so).
Note that it is not enough to just swap the operands to ensure a
constant is on the RHS, as we want to also cover the case with
2 constants.
Reviewers: lebedev.ri, spatel, reames, scanon
Reviewed By: lebedev.ri, reames
Differential Revision: https://reviews.llvm.org/D67553
llvm-svn: 372915
https://rise4fun.com/Alive/KtL
This also shows that the fold added in D67412 / r372257
was too specific, and the new fold allows those test cases
to be handled more generically, therefore i delete now-dead code.
This is yet again motivated by
D67122 "[UBSan][clang][compiler-rt] Applying non-zero offset to nullptr is undefined behaviour"
llvm-svn: 372912
https://rise4fun.com/Alive/KtL
This should go to InstCombiner::foldICmpBinO(), next to
"Convert sub-with-unsigned-overflow comparisons into a comparison of args."
llvm-svn: 372911
Summary:
Useful in case you want to have control over interrupt vector generation.
For example in Rust language we have an arrangement where all unhandled
ISR vectors gets mapped to a single default handler function. Which is
hard to implement when LLVM tries to generate vectors on its own.
Reviewers: asl, krisb
Subscribers: hiraditya, JDevlieghere, awygle, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67313
llvm-svn: 372910
As @reames pointed out post-commit, rL371518 adds additional rounding
in some cases, when doing constant folding of the multiplication.
This breaks a guarantee llvm.fma makes and must be avoided.
This patch reapplies rL371518, but splits off the simplifications not
requiring rounding from SimplifFMulInst as SimplifyFMAFMul.
Reviewers: spatel, lebedev.ri, reames, scanon
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D67434
llvm-svn: 372899
When checking for tail call eligibility, we should use the correct CCAssignFn
for each argument, rather than just checking if the caller/callee is varargs or
not.
This is important for tail call lowering with varargs. If we don't check it,
then basically any varargs callee with parameters cannot be tail called on
Darwin, for one thing. If the parameters are all guaranteed to be in registers,
this should be entirely safe.
On top of that, not checking for this could potentially make it so that we have
the wrong stack offsets when checking for tail call eligibility.
Also refactor some of the stuff for CCAssignFnForCall and pull it out into a
helper function.
Update call-translator-tail-call.ll to show that we can now correctly tail call
on Darwin. Also add two extra tail call checks. The first verifies that we still
respect the caller's stack size, and the second verifies that we still don't
tail call when a varargs function has a memory argument.
Differential Revision: https://reviews.llvm.org/D67939
llvm-svn: 372897
Modern processors predict the targets of an indirect branch regardless of
the size of any jump table used to glean its target address. Moreover,
branch predictors typically use resources limited by the number of actual
targets that occur at run time.
This patch changes the semantics of the option `-max-jump-table-size` to limit
the number of different targets instead of the number of entries in a jump
table. Thus, it is now renamed to `-max-jump-table-targets`.
Before, when `-max-jump-table-size` was specified, it could happen that
cluster jump tables could have targets used repeatedly, but each one was
counted and typically resulted in tables with the same number of entries.
With this patch, when specifying `-max-jump-table-targets`, tables may have
different lengths, since the number of unique targets is counted towards the
limit, but the number of unique targets in tables is the same, but for the
last one containing the balance of targets.
Differential revision: https://reviews.llvm.org/D60295
llvm-svn: 372893
We might be able to do better on the example in the test,
but in general, we should not scalarize a splatted vector
binop if there are other uses of the binop. Otherwise, we
can end up with code as we had - a scalar op that is
redundant with a vector op.
llvm-svn: 372886
The changes here are based on the corresponding diffs for allowing FMF on 'select':
D61917 <https://reviews.llvm.org/D61917>
As discussed there, we want to have fast-math-flags be a property of an FP value
because the alternative (having them on things like fcmp) leads to logical
inconsistency such as:
https://bugs.llvm.org/show_bug.cgi?id=38086
The earlier patch for select made almost no practical difference because most
unoptimized conditional code begins life as a phi (based on what I see in clang).
Similarly, I don't expect this patch to do much on its own either because
SimplifyCFG promptly drops the flags when converting to select on a minimal
example like:
https://bugs.llvm.org/show_bug.cgi?id=39535
But once we have this plumbing in place, we should be able to wire up the FMF
propagation and start solving cases like that.
The change to RecurrenceDescriptor::AddReductionVar() is required to prevent a
regression in a LoopVectorize test. We are intersecting the FMF of any
FPMathOperator there, so if a phi is not properly annotated, new math
instructions may not be either. Once we fix the propagation in SimplifyCFG, it
may be safe to remove that hack.
Differential Revision: https://reviews.llvm.org/D67564
llvm-svn: 372878
Merge more Select pseudo instructions in emitSelect() by allowing other
instructions between them as long as they do not clobber CC.
Debug value instructions are now moved down to below the new PHIs instead of
erasing them.
Review: Ulrich Weigand
https://reviews.llvm.org/D67619
llvm-svn: 372873
I started this patch as a refactoring, tried to make a helper for
getting symbol names, similar to how we get section names
used in warning messages.
So this patch cleanups the code and fixes an issue: symbol names
in warning messages were not demangled.
Differential revision: https://reviews.llvm.org/D68012
llvm-svn: 372867
The changes here are based on the corresponding diffs for allowing FMF on 'select':
D61917
As discussed there, we want to have fast-math-flags be a property of an FP value
because the alternative (having them on things like fcmp) leads to logical
inconsistency such as:
https://bugs.llvm.org/show_bug.cgi?id=38086
The earlier patch for select made almost no practical difference because most
unoptimized conditional code begins life as a phi (based on what I see in clang).
Similarly, I don't expect this patch to do much on its own either because
SimplifyCFG promptly drops the flags when converting to select on a minimal
example like:
https://bugs.llvm.org/show_bug.cgi?id=39535
But once we have this plumbing in place, we should be able to wire up the FMF
propagation and start solving cases like that.
The change to RecurrenceDescriptor::AddReductionVar() is required to prevent a
regression in a LoopVectorize test. We are intersecting the FMF of any
FPMathOperator there, so if a phi is not properly annotated, new math
instructions may not be either. Once we fix the propagation in SimplifyCFG, it
may be safe to remove that hack.
Differential Revision: https://reviews.llvm.org/D67564
llvm-svn: 372866
This is a follow-up for D67757,
which allows to describe .stack_sizes sections with a new
YAML syntax.
Differential revision: https://reviews.llvm.org/D67759
llvm-svn: 372855
Currently we can't use unique suffixes in section names to describe
stack sizes sections. E.g. '.stack_sizes [1]' will be treated as a regular section.
This happens because we recognize stack sizes section by name and
do not yet drop the suffix before the check.
The patch fixes it.
Differential revision: https://reviews.llvm.org/D68018
llvm-svn: 372853
It is a follow-up requested in the review comment
for D67757. Allows to use Content + Size or just Size
when describing .stack_sizes sections in YAML document
Differential revision: https://reviews.llvm.org/D67958
llvm-svn: 372845
During legalisation we can end up with some pretty strange nodes, like shifts
of 0. We need to make sure we don't try to make long shifts of these, ending up
with invalid assembly instructions. A long shift with a zero immediate actually
encodes a shift by 32.
Differential Revision: https://reviews.llvm.org/D67664
llvm-svn: 372839
The crash might happen when we have either a broken or unsupported object
and trying to resolve relocations when dumping the .stack_sizes section.
For the test case I used a 32-bits ELF header and a 64-bit relocation.
In this case a null pointer is returned by the code instead of the relocation
resolver function and then we crash.
Differential revision: https://reviews.llvm.org/D67962
llvm-svn: 372838
I think we should be able to use shl instead of sshl and ushl for
positive constant shift values, unless I am missing something.
We already have the machinery in place to ensure we only replace
nodes, if the shift value is positive and <= the element width.
This is a generalization of an earlier patch rL372565.
Reviewers: t.p.northover, samparker, dmgreen, anemet
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D67955
llvm-svn: 372824
-B is ignored for GNU objcopy compatibility after D67215/r371914.
* Delete mentions of -B from input-output-target.test - we have enough -B tests.
* Merge binary-input-with-arch.test into binary-output-target.test.
Reviewed By: rupprecht
Differential Revision: https://reviews.llvm.org/D67693
llvm-svn: 372809
Currently, if an array element type size is 0, the number of
array elements will be set to 0, regardless of what user
specified. This implementation is done in the beginning where
BTF is mostly used to calculate the member offset.
For example,
struct s {};
struct s1 {
int b;
struct s a[2];
};
struct s1 s1;
The BTF will have struct "s1" member "a" with element count 0.
Now BTF types are used for compile-once and run-everywhere
relocations and we need more precise type representation
for type comparison. Andrii reported the issue as there
are differences between original structure and BTF-generated
structure.
This patch made the change to correctly assign "2"
as the number elements of member "a".
Some dead codes related to ElemSize compuation are also removed.
Differential Revision: https://reviews.llvm.org/D67979
llvm-svn: 372785
If we generate the gc.relocate, and then later prove two arguments to the statepoint are equivalent, we should canonicalize the gc.relocate to the form we would have produced if this had been known before rewriting.
llvm-svn: 372771
Summary:
This is again motivated by D67122 sanitizer check enhancement.
That patch seemingly worsens `-fsanitize=pointer-overflow`
overhead from 25% to 50%, which strongly implies missing folds.
For
```
#include <cassert>
char* test(char& base, signed long offset) {
__builtin_assume(offset < 0);
return &base + offset;
}
```
We produce
https://godbolt.org/z/r40U47
and again those two icmp's can be merged:
```
Name: 0
Pre: C != 0
%adjusted = add i8 %base, C
%not_null = icmp ne i8 %adjusted, 0
%no_underflow = icmp ult i8 %adjusted, %base
%r = and i1 %not_null, %no_underflow
=>
%neg_offset = sub i8 0, C
%r = icmp ugt i8 %base, %neg_offset
```
https://rise4fun.com/Alive/ALaphttps://rise4fun.com/Alive/slnN
There are 3 other variants of this pattern,
i believe they all will go into InstSimplify.
https://bugs.llvm.org/show_bug.cgi?id=43259
Reviewers: spatel, xbolva00, nikic
Reviewed By: spatel
Subscribers: efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67849
llvm-svn: 372768
Summary:
This is again motivated by D67122 sanitizer check enhancement.
That patch seemingly worsens `-fsanitize=pointer-overflow`
overhead from 25% to 50%, which strongly implies missing folds.
This pattern isn't exactly what we get there
(strict vs. non-strict predicate), but this pattern does not
require known-bits analysis, so it is best to handle it first.
```
Name: 0
%adjusted = add i8 %base, %offset
%not_null = icmp ne i8 %adjusted, 0
%no_underflow = icmp ule i8 %adjusted, %base
%r = and i1 %not_null, %no_underflow
=>
%neg_offset = sub i8 0, %offset
%r = icmp ugt i8 %base, %neg_offset
```
https://rise4fun.com/Alive/knp
There are 3 other variants of this pattern,
they all will go into InstSimplify:
https://rise4fun.com/Alive/bIDZhttps://bugs.llvm.org/show_bug.cgi?id=43259
Reviewers: spatel, xbolva00, nikic
Reviewed By: spatel
Subscribers: hiraditya, majnemer, vsk, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67846
llvm-svn: 372767