This patch adds support for the following new instructions in the
Power ISA 2.07:
vpksdss
vpksdus
vpkudus
vpkudum
vupkhsw
vupklsw
These instructions are available through the vec_packs, vec_packsu,
vec_unpackh, and vec_unpackl built-in interfaces. These are
lane-sensitive instructions, so the built-ins have different
implementations for big- and little-endian, and the instructions must
be marked as killing the vector swap optimization for now.
The first three instructions perform saturating pack operations. The
fourth performs a modulo pack operation, which means it can be
represented with a vector shuffle, and conversely the appropriate
vector shuffles may cause this instruction to be generated. The other
instructions are only generated via built-in support for now.
I noticed during patch preparation that the macro __VSX__ was not
previously predefined when the power8-vector or direct-move features
are requested. This is an error, and I've corrected that here as
well.
Appropriate tests have been added.
There is a companion patch to llvm for the rest of this support.
llvm-svn: 237500
The error has the form ... 'int' ... 'const int' ... dropped qualifiers. At
first glance, it appears that the const qualifier is added. Reverse the types
so that the second type is less qualified than the first.
llvm-svn: 237482
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
Summary:
r235215 enables support in LLVM for legalizing f16 type in the IR. AArch64
already had support for this. r235215 and some backend patches brought support
for ARM, X86, X86-64, Mips and Mips64.
This change exposes the LangOption 'NativeHalfType' in the command line, so the
backend legalization can be used if desired. NativeHalfType is enabled for
OpenCL (current behavior) or if '-fnative-half-type' is set.
Reviewers: olista01, steven_wu, ab
Subscribers: cfe-commits, srhines, aemerson
Differential Revision: http://reviews.llvm.org/D9781
llvm-svn: 237406
This reverts commit 742dc9b6c9686ab52860b7da39c3a126d8a97fbc.
This is generating multiple segfaults in our internal builds.
Test case coming up shortly.
llvm-svn: 237391
Emit warning when operand to `delete` is allocated with `new[]` or
operand to `delete[]` is allocated with `new`.
Reviewers: rtrieu, jordan_rose, rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D4661
llvm-svn: 237368
This, in preparation for the introduction of more new keywords in the
implementation of the C++ language, generalizes the support for future keyword
compat diagnostics (e.g., diag::warn_cxx11_keyword) by extending the
applicability of the relevant property in IdentifierTable with appropriate
renaming.
Patch by Hubert Tong!
llvm-svn: 237332
Previously, if a semi-colon is unexpectedly added before a closing ')', ']' or
'}', two errors and one note would emitted, and the parsing would get confused
to which scope it was in. This change consumes the semi-colon, recovers
parsing better, and emits only one error with a fix-it.
llvm-svn: 237192
'schedule' clause for combined directives requires additional processing. Special helper variable is generated, that is captured in the outlined parallel region for 'parallel for' region. This captured variable is used to store chunk expression from the 'schedule' clause in this 'parallel for' region.
llvm-svn: 237100
After mailing list discussion on 11-13 March we would prefer to stick to a
single spelling of the long option.
This reverts commit 30035fe1a7c759c89ee62eb46efce6b3790fcc08.
llvm-svn: 237003
Summary:
Possible coverage levels are:
* -fsanitize-coverage=func - function-level coverage
* -fsanitize-coverage=bb - basic-block-level coverage
* -fsanitize-coverage=edge - edge-level coverage
Extra features are:
* -fsanitize-coverage=indirect-calls - coverage for indirect calls
* -fsanitize-coverage=trace-bb - tracing for basic blocks
* -fsanitize-coverage=trace-cmp - tracing for cmp instructions
* -fsanitize-coverage=8bit-counters - frequency counters
Levels and features can be combined in comma-separated list, and
can be disabled by subsequent -fno-sanitize-coverage= flags, e.g.:
-fsanitize-coverage=bb,trace-bb,8bit-counters -fno-sanitize-coverage=trace-bb
is equivalient to:
-fsanitize-coverage=bb,8bit-counters
Original semantics of -fsanitize-coverage flag is preserved:
* -fsanitize-coverage=0 disables the coverage
* -fsanitize-coverage=1 is a synonym for -fsanitize-coverage=func
* -fsanitize-coverage=2 is a synonym for -fsanitize-coverage=bb
* -fsanitize-coverage=3 is a synonym for -fsanitize-coverage=edge
* -fsanitize-coverage=4 is a synonym for -fsanitize-coverage=edge,indirect-calls
Driver tries to diagnose invalid flag usage, in particular:
* At most one level (func,bb,edge) must be specified.
* "trace-bb" and "8bit-counters" features require some level to be specified.
See test case for more examples.
Test Plan: regression test suite
Reviewers: kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9577
llvm-svn: 236790
- added -fcuda-include-gpubinary option to incorporate results of
device-side compilation into host-side one.
- generate code to register GPU binaries and associated kernels
with CUDA runtime and clean-up on exit.
- added test case for init/deinit code generation.
Differential Revision: http://reviews.llvm.org/D9507
llvm-svn: 236765
A LambdaCapture does not have sufficient information
to correctly determine whether it is an init-capture or not.
Doing so requires knowledge held in the LambdaExpr itself.
It the case of a nested capture of an init-capture it is not
sufficient to check (as LambdaCapture::isInitCapture did)
whether the associated VarDecl was from an init-capture.
This patch moves isInitCapture to LambdaExpr and updates
Capture->isInitCapture() to Lambda->isInitCapture(Capture).
llvm-svn: 236760
Summary:
The next step is to add user-friendly control over these options
to driver via -fsanitize-coverage= option.
Test Plan: regression test suite
Reviewers: kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9545
llvm-svn: 236756
The MSVC 2015 ABI utilizes a rather straightforward adaptation of the
algorithm found in the appendix of N2382. While we are here, implement
support for emitting cleanups if an exception is thrown while we are
intitializing a static local variable.
llvm-svn: 236697
This adds low-level builtins to allow access to all of the z13 vector
instructions. Note that instructions whose semantics can be described
by standard C (including clang extensions) do not get any builtins.
For each instructions whose semantics *cannot* (fully) be described, we
define a builtin named __builtin_s390_<insn> that directly maps to this
instruction. These are intended to be compatible with GCC.
For instructions that also set the condition code, the builtin will take
an extra argument of type "int *" at the end. The integer pointed to by
this argument will be set to the post-instruction CC value.
For many instructions, the low-level builtin is mapped to the corresponding
LLVM IR intrinsic. However, a number of instructions can be represented
in standard LLVM IR without requiring use of a target intrinsic.
Some instructions require immediate integer operands within a certain
range. Those are verified at the Sema level.
Based on a patch by Richard Sandiford.
llvm-svn: 236532
This patch adds support for the z13 architecture type. For compatibility
with GCC, a pair of options -mvx / -mno-vx can be used to selectively
enable/disable use of the vector facility.
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level,
but also at the LLVM IR level. This is done by selecting a different
DataLayout string depending on whether the vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236531
This is needed to prevent a TypoExpr from being corrected to a variable
when the TypoExpr is a subexpression of that variable's initializer.
Also exclude more keywords from the correction candidate pool when the
subsequent token is .* or ->* since keywords like "new" or "return"
aren't valid on the left side of those operators.
Fixes PR23140.
llvm-svn: 236519
clang::MacroDefinition now models the currently-defined value of a macro. The
previous MacroDefinition type, which represented a record of a macro definition
directive for a detailed preprocessing record, is now called MacroDefinitionRecord.
llvm-svn: 236400