Summary: Add support on the parser, registry, and DynTypedMatcher for binding IDs dynamically.
Reviewers: klimek
CC: cfe-commits, revane
Differential Revision: http://llvm-reviews.chandlerc.com/D911
llvm-svn: 183144
This library supports all the features of the compile-time based ASTMatcher
library, but allows the user to specify and construct the matchers at runtime.
It contains the following modules:
- A variant type, to be used by the matcher factory.
- A registry, where the matchers are indexed by name and have a factory method
with a generic signature.
- A simple matcher expression parser, that can be used to convert a matcher
expression string into actual matchers that can be used with the AST at
runtime.
Many features where omitted from this first revision to simplify this code
review. The main ideas are still represented in this change and it already has
support working use cases.
Things that are missing:
- Support for polymorphic matchers. These requires supporting code in the
registry, the marshallers and the variant type.
- Support for numbers, char and bool arguments to the matchers. This requires
supporting code in the parser and the variant type.
- A command line program putting everything together and providing an already
functional tool.
Patch by Samuel Benzaquen.
llvm-svn: 181768
This yields a log(#ast_nodes) worst-case improvement with matchers like
stmt(unless(hasAncestor(...))).
Also made the order of visitation for ancestor matches BFS, as the most
common use cases (for example finding the closest enclosing function
definition) rely on that.
llvm-svn: 177081
This does not yet implement the LimitNode approach discussed.
The impact of this is an O(n) in the number of nodes in the AST
reduction of complexity for certain kinds of matchers (as otherwise the
parent map gets recreated for every new MatchFinder).
See FIXMEs in the comments for the direction of future work.
llvm-svn: 176251
First, this implements a match() method on MatchFinder; this allows us
to get rid of the findAll implementation, as findAll is really a special
case of recursive matchers on match.
Instead of findAll, provide a convenience function match() that lets
users iterate easily over the results instead of needing to implement
callbacks.
llvm-svn: 174172
The problem is that a partial match of an (explicit or implicit) allOf matcher
binds results, i.e.
recordDecl(decl().bind("x"), hasName("A"))
can very well bind a record that is not named "A". With this fix, the common
cases of stumbling over this bug are fixed by the BoundNodesMap overwriting the
results of a partial match. An error can still be created with a weird
combination of anyOf and allOf (see inactive test). We need to decide whether
this is worth fixing, as the fix will have performance impact.
Review: http://llvm-reviews.chandlerc.com/D124
llvm-svn: 168177
The RecursiveASTVisitor assumes that any given Traverse-method can be called with a NULL-node. So the subclass needs to handle these appropriately.
llvm-svn: 167850
When recursively visiting the generated matches, the aggregated bindings need
to be copied during the recursion. Otherwise, we they might not be properly
overwritten (which is shown by the test), or there might be bound nodes present
that were bound on a different matching branch.
Review: http://llvm-reviews.chandlerc.com/D112
llvm-svn: 167695
Often users of the ASTMatchers want to add tasks that are done once per
translation unit, for example, cleaning up caches. Combined with the
interception point for the end of source file one can add to the factory
creation, this covers the cases we've seen users need.
llvm-svn: 167271
This implements has(), hasDescendant(), forEach() and
forEachDescendant() for NestedNameSpecifier and NestedNameSpecifierLoc
matchers.
Review: http://llvm-reviews.chandlerc.com/D86
llvm-svn: 167017
Without this patch, the isDerivedFrom matcher asserts in the
"assert(ClassDecl != NULL);" in the new test, as a
DependentTemplateSpecilizationType is not a sub-type of
TemplateSpecializationType and also does not offer getAsCXXRecordDecl().
I am not sure why this did not cause problems before. It is now (after
the changed implementation of isDerivedFrom) easier to write a matcher
that actually gets into this branch of the code.
llvm-svn: 164127
class itself. This caused some confusion (intuitively, a class is not
derived from itself) and makes it hard to write certain matchers, e.g.
"match and bind any pair of base and subclass".
The original behavior can be achieved with a new isA-matcher. Similar
to all other matchers, this matcher has the same behavior and name as
the corresponding AST-entity - in this case the isa<>() function.
llvm-svn: 163385
Implements the hasAncestor matcher. This builds
on the previous patch that introduced DynTypedNode to build up
a parent map for an additional degree of freedom in the AST traversal.
The map is only built once we hit an hasAncestor matcher, in order
to not slow down matching for cases where this is not needed.
We could implement some speed-ups for special cases, like building up
the parent map as we go and only building up the full map if we break
out of the already visited part of the tree, but that is probably
not going to be worth it, and would make the code significantly more
complex.
Major TODOs are:
- implement hasParent
- implement type traversal
- implement memoization in hasAncestor
llvm-svn: 163382
Due to DynTypedNode the basic dynamically typed matcher interface can now be simplified.
Also switches the traversal interfaces to use DynTypedNode;
this is in preperation for the hasAncestor implementation, and
also allows us to need fewer changes when we want to add new
nodes to traverse, thus making the code a little more decoupled.
Main design concerns: I went back towards the original design
of getNodeAs to return a pointer, and switched DynTypedNode::get
to always return a pointer (in case of value types like QualType
the pointer points into the storage of DynTypedNode, thus allowing
us to treat all the nodes the same from the point of view of a
user of the DynTypedNodes.
Adding the QualType implementation for DynTypedNode was needed
for the recursive traversal interface changes.
llvm-svn: 163212
Intorduces an abstraction for DynTypedNode which makes
is impossible to create in ways that introduced the bug;
also hides the implementation details of the template
magic away from the user and prepares the code for adding
QualType and TypeLoc bindings, as well as using DynTypedNode
instead of overloads for child and ancestor matching.
getNodeAs<T> was changed towards a non-pointer type, as
we'll want QualType and TypeLoc nodes to be returned
by value (the alternative would be to create new storage
which is prohibitively costly if we want to use it for
child / ancestor matching).
DynTypedNode is moved into a new header ASTTypeTraits.h,
as it is completely independent of the rest of the matcher
infrastructure - if the need comes up, we can move it to
a more common place.
The interface for users before the introduction of the
common storage change remains the same, minus the introduced
bug, for which a regression test was added.
llvm-svn: 162936
into the correct types when pulling them out in the result
callback in a type safe way.
This is also the base change for multiple things that will
allow handling things more generally and thus supporting more
of the AST, especially handling Type nodes.
Patch contributed by Michael Diamond.
llvm-svn: 162804