Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
Ffter commit at rev219046 512-bit broadcasts lowering become non-optimal. Most of tests on broadcasting and embedded broadcasting were changed and they doesn’t produce efficient code.
Example below is from commit changes (it’s the first test from test/CodeGen/X86/avx512-vbroadcast.ll):
define <16 x i32> @_inreg16xi32(i32 %a) {
; CHECK-LABEL: _inreg16xi32:
; CHECK: ## BB#0:
-; CHECK-NEXT: vpbroadcastd %edi, %zmm0
+; CHECK-NEXT: vmovd %edi, %xmm0
+; CHECK-NEXT: vpbroadcastd %xmm0, %ymm0
+; CHECK-NEXT: vinserti64x4 $1, %ymm0, %zmm0, %zmm0
; CHECK-NEXT: retq
%b = insertelement <16 x i32> undef, i32 %a, i32 0
%c = shufflevector <16 x i32> %b, <16 x i32> undef, <16 x i32> zeroinitializer
ret <16 x i32> %c
}
Here, 256-bit broadcast was generated instead of 512-bit one.
In this patch
1) I added vector-shuffle lowering through broadcasts
2) Removed asserts and branches likes because this is incorrect
- assert(Subtarget->hasDQI() && "We can only lower v8i64 with AVX-512-DQI");
3) Fixed lowering tests
llvm-svn: 220774
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.
Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.
When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.
It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.
There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).
Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]
I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.
llvm-svn: 219046
tighter, more strict FileCheck assertions. Some of these I really like
as they show case exactly what instruction sequences come out of these
microscopic functionality tests.
llvm-svn: 218936
If the DAG already has only legal types, then the second round of DAG combines
is skipped. In this case VSELECT+SETCC patterns that match a more efficient
instruction (e.g. min/max) are never recognized.
This fix allows VSELECT+SETCC combines if the types are already legal before DAG
type legalization.
Reviewer: Nadav
llvm-svn: 190105