Chances are we'll be asked again after type legalization, but before that point
it's better to claim misaligned accesses aren't allowed than to assert.
llvm-svn: 332840
We were previously using a DT in CVP through SimplifyQuery, but not requiring it in
the new pass manager. Hence it would crash if DT was not already available. This now
gets DT directly and plumbs it through to where it is used (instead of using it
through SQ).
llvm-svn: 332836
MipsLongBranchPass and MipsHazardSchedule passes are joined to one pass
because of mutual conflict. When MipsHazardSchedule inserts 'nop's, it
potentially breaks some jumps, so they have to be expanded to long
branches. When some branch is expanded to long branch, it potentially
creates a hazard situation, which should be fixed by adding nops.
New pass is called MipsBranchExpansion, it combines these two passes,
and runs them alternately until one of them reports no changes were made.
Differential Revision: https://reviews.llvm.org/D46641
llvm-svn: 332834
As suggested by Fabian on PR37426, we can use PMULUDQ to perform v4i32 vector rotations as the upper 32bits of the multiply will contain the 'wrapped' bits of the rotation.
v8i16/v16i8 rotations would be straightforward to add to lowerRotate in the future - ideally we'd mostly share code with the vector shifts lowering.
Differential Revision: https://reviews.llvm.org/D46954
llvm-svn: 332832
Summary: Add wrappers for a module's alias iterators and a getter and setter for the aliasee value.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: llvm-commits, harlanhaskins
Differential Revision: https://reviews.llvm.org/D46808
llvm-svn: 332826
Previously the compiler was using the microMIPSR3 variants, incorrectly.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D46948
llvm-svn: 332820
We already do this for min/max (see the blob above the diff),
so we should do the same for abs/nabs.
A sign-bit check (<s 0) is used as a predicate for other IR
transforms and it's likely the best for codegen.
This might solve the motivating cases for D47037 and D47041,
but I think those patches still make sense. We can't guarantee
this canonicalization if the icmp has more than one use.
Differential Revision: https://reviews.llvm.org/D47076
llvm-svn: 332819
Summary:
- Provide LLVMGetValueName2 and LLVMSetValueName2 that return and take the length of the provided C string respectively
- Deprecate LLVMGetValueName and LLVMSetValueName
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: llvm-commits, harlanhaskins
Differential Revision: https://reviews.llvm.org/D46890
llvm-svn: 332810
In the patch rL329547, we have lifted the over-restrictive limitation on collected range
checks, allowing to work with range checks with the end of their range not being
provably non-negative. However it appeared that the non-negativity of this value was
assumed in the utility function `ClampedSubtract`. In particular, its reasoning is based
on the fact that `0 <= SINT_MAX - X`, which is not true if `X` is negative.
The function `ClampedSubtract` is only called twice, once with `X = 0` (which is OK)
and the second time with `X = IRC.getEnd()`, where we may now see the problem if
the end is actually a negative value. In this case, we may sometimes miscompile.
This patch is the conservative fix of the miscompile problem. Rather than rejecting
non-provably non-negative `getEnd()` values, we will check it for non-negativity in
runtime. For this, we use function `smax(smin(X, 0), -1) + 1` that is equal to `1` if `X`
is non-negative and is equal to 0 if `X` is negative. If we multiply `Begin, End` of safe
iteration space by this function calculated for `X = IRC.getEnd()`, we will get the original
`[Begin, End)` if `IRC.getEnd()` was non-negative (and, thus, `ClampedSubtract` worked
correctly) and the empty range `[0, 0)` in case if ` IRC.getEnd()` was negative.
So we in fact prohibit execution of the main loop if at least one of range checks was
made against a negative value (and we figured it out in runtime). It is still better than
what we have before (non-negativity had to be proved in compile time) and prevents
us from miscompile, however it is sometiles too restrictive for unsigned range checks
against a negative value (which in fact can be eliminated).
Once we re-implement `ClampedSubtract` in a way that it handles negative `X` correctly,
this limitation can be lifted, too.
Differential Revision: https://reviews.llvm.org/D46860
Reviewed By: samparker
llvm-svn: 332809
Summary:
In https://reviews.llvm.org/rL332804 I loosed the assertion in
the Clang driver test that forced me to revert
https://reviews.llvm.org/rL332299. Once this lands I should be
able to narrow down what caused PS4 buildbots to fail, and
reinstate the check in that test.
Test Plan: check-llvm & check-clang
llvm-svn: 332805
Aaron Ballman reported that TestPlugin warned about it using exception handling
without /EHsc flag, and that llvmGetPassInfo() had conflicting export
attributes (dllimport in the header, dllexport in the source file).
/EHsc is because TestPlugin didn't use the llvm_ cmake functions, so
llvm_update_compile_flags didn't get called for the target
(llvm_update_compile_flags explicitly passes /Ehs-c-, which fixes the warning).
Use add_llvm_loadable_module instead of add_library(... MODULE) to fix this.
This also has the side effect of not building the plugin on Windows. That's not
a big problem, since before the plugin was built on Windows, but the test
didn't attempt to load it, due to -DLLVM_ENABLE_PLUGIN not being passed to
PluginsTests.cpp during compilation on Windows. This makes the plugin behavior
consistent with e.g. lib/Transforms/Hello/CMakeLists.txt. (This also
automatically sets LTDL_SHLIB_EXT correctly.)
The dllimport/dllexport warning is more serious: Since LLVM doesn't generally
use export annotations for its code, the only way the plugin could link was by
linking in some LLVM libraries both into the test and the dll, so the plugin
would call the llvm code in the dll instead of the copy in the main executable.
This means globals weren't shared, and things generally can't work. (I think
there's a build config where you can build a LLVM.dll which might work, but
that wasn't how the test was configured. If that config is used, the dll should
still be built, but I haven't checked).
Now that add_llvm_loadable_module is used, LLVM_LINK_COMPONENTS got linked into
both executable and plugin on posix too, so unset it after the executable so
that the plugin doesn't end up with a 2nd copy of things on posix.
https://reviews.llvm.org/D47082
llvm-svn: 332796
The evaluator goes through BB and creates global vars as temporary values to evaluate
results of LLVM instructions. It creates undef for alloca, however it assumes alloca
in addr space 0. If the next instruction is addrspace cast to 0, then we get an invalid
cast instruction.
This patch let the temp global var have an address space matching alloca addr space,
so that the valuation can be done.
Differential Revision: https://reviews.llvm.org/D47081
llvm-svn: 332794
Summary:
invariant.group.launder should not stop propagation
of nonnull and dereferenceable, because e.g. we would not be
able to hoist loads speculatively.
Reviewers: rsmith, amharc, kuhar, xbolva00, hfinkel
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D46972
llvm-svn: 332788
Summary:
This feature is not needed, but it might be usefull in the future
to use metadata to mark what which function should support it
(and strip it when not).
Reviewers: rsmith, sanjoy, amharc, kuhar
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D45419
llvm-svn: 332787
Summary:
Memdep had funny bug related to invariant.groups - because it did not
invalidated cache, in some very rare cases it was possible to show memory
dependence of the instruction that was deleted, but because other
instruction took it's place it resulted in call to vtable!
Thanks @amharc for repro!.
Reviewers: dberlin, kuhar, amharc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45320
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
llvm-svn: 332781
Eliminate loads from the dispatch packet when they will have
a known value.
Also pattern match the code used by the library to handle partial
workgroup dispatches, which isn't necessary if reqd_work_group_size
is used.
llvm-svn: 332771
Summary:
Floating point division by zero or even undef does not have undefined
behavior and may occur due to optimizations.
Fixes https://bugs.llvm.org/show_bug.cgi?id=37523.
Reviewers: kcc
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47085
llvm-svn: 332761
The casts in the delta computation for size remarks should have
been static casts. This fixes that.
Thanks to Dávid Bolvanský for pointing that out.
llvm-svn: 332758
Provide some free functions to reduce verbosity of endian-writing
a single value, and replace the endianness template parameter with
a field.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47032
llvm-svn: 332757
The return value of sys::getDefaultTargetTriple, which is derived from
-DLLVM_DEFAULT_TRIPLE, is used to construct tool names, default target,
and in the future also to control the search path directly; as such it
should be used textually, without interpretation by LLVM.
Normalization of this value may lead to unexpected results, for example
if we configure LLVM with -DLLVM_DEFAULT_TARGET_TRIPLE=x86_64-linux-gnu,
normalization will transform that value to x86_64--linux-gnu. Driver will
use that value to search for tools prefixed with x86_64--linux-gnu- which
may be confusing. This is also inconsistent with the behavior of the
--target flag which is taken as-is without any normalization and overrides
the value of LLVM_DEFAULT_TARGET_TRIPLE.
Users of sys::getDefaultTargetTriple already perform their own
normalization as needed, so this change shouldn't impact existing logic.
Differential Revision: https://reviews.llvm.org/D46910
llvm-svn: 332750
The idea is that a client that wants split dwarf would create a
specific kind of object writer that creates two files, and use it to
create the streamer.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47050
llvm-svn: 332749
The code that generates post-increments for Hexagon considered
integer values only. This patch adds support to generate them for
floating point values, f32 and f64.
Differential Revision: https://reviews.llvm.org/D47036
llvm-svn: 332748
The introduced problem is:
llvm.src/lib/Transforms/Vectorize/VPlanVerifier.cpp:29:13: error: unused function 'hasDuplicates' [-Werror,-Wunused-function]
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
^
llvm-svn: 332747
BtVer2 - fix NumMicroOp and account for the Lat+6cy GPR->XMM and Lat+1cy XMm->GPR delays (see rL332737)
The high number of MOVD/MOVQ equivalent instructions meant that there were a number of missed patterns in SNB/Znver1:
SNB - add missing GPR<->MMX costs (taken from Agner / Intel AOM)
Znver1 - add missing GPR<->XMM MOVQ costs (taken from Agner)
llvm-svn: 332745
The intrinsic legalization for masked truncate uses ISD::TRUNCATE which can be constant folded by getNode. This prevents getVectorMaskingNode from seeing the ISD::TRUNCATE special case where it should emit X86ISD::SELECT instead of ISD::VSELECT. This causes a vselect with a v16i1 or v8i1 condition to be emitted during vector legalization. but vector legalization doesn't revisit nodes it creates. DAG combine will then promote this condition to match the result type. Then op legalization will try to legalize it, but the custom lowering hook returned SDValue(). But op legalization doesn't have an Expand for VSELECT because it expects vector legalization to have taken care of it. So the operation sticks around and fails in isel.
This patch adds a custom legalization hook to morph it to a vXi8 vselect instead.
This also simplifies the normal vXi16 vselect handling because vector legalization was normally expanding to AND/ANDN/OR and DAG combine was turning that into VBLENDVB. So we can skip a step by doing it directly.
Fixes PR37499
Differential Revision: https://reviews.llvm.org/D47025
llvm-svn: 332743
This is a revert of the changes from https://reviews.llvm.org/D46265;
the new test introduced (test/CodeGen/X86/PR37310.mir) causes buildbot
failures.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47061
llvm-svn: 332742
Avoid requirement that number of values must be known at assembler
time.
Fixes PR33586.
Reviewers: rnk, peter.smith, echristo, jyknight
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D46703
llvm-svn: 332741
This patch adds a remark which tells the user when a pass changes the number of
IR instructions in a module.
It can be enabled by using -Rpass-analysis=size-info.
The point of this is to make it easier to collect statistics on how passes
modify programs in terms of code size. This is similar in concept to timing
reports, but using a remark-based interface makes it easy to diff changes over
multiple compilations of the same program.
By adding functionality like this, we can see
* Which passes impact code size the most
* How passes impact code size at different optimization levels
* Which pass might have contributed the most to an overall code size
regression
The patch lives in the legacy pass manager, but since it's simply emitting
remarks, it shouldn't be too difficult to adapt the functionality to the new
pass manager as well. This can also be adapted to handle MachineInstr counts in
code gen passes.
https://reviews.llvm.org/D38768
llvm-svn: 332739
Summary:
Minor changes to reflect changes to the code that were not documented:
- `SCUDO_DEFAULT_OPTIONS` compile time way of defining options;
- MIPS added as a supported architecture;
- clarification on how to fully disable the Quarantine;
- rewording in a few places.
Reviewers: alekseyshl, flowerhack
Reviewed By: alekseyshl
Subscribers: sdardis, arichardson, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D47071
llvm-svn: 332736
Retag some instructions that were missed when we split off vector load/store/moves - MOVQ/MOVD etc.
Fixes BtVer2/SLM which have different behaviours for GPR stores.
llvm-svn: 332718
Retag some instructions that were missed when we split off vector load/store/moves - MOVSS/MOVSD/MOVHPD/MOVHPD/MOVLPD/MOVLPS etc.
Fixes BtVer2/SLM which have different behaviours for GPR stores.
llvm-svn: 332714
At the last EuroLLVM, I gave a lightning talk about code review
statistics on Phabricator reviews and what we could derive from that
to try and reduce waiting-for-review bottlenecks. (see
https://llvm.org/devmtg/2018-04/talks.html#Lightning_2).
One of the items I pointed to is a script we've been using internally
for a little while to try and match open Phabricator reviews to people
who might be able to review them well. I received quite a few requests
to share that script, so here it is.
Warning: this is prototype quality!
The script uses 2 similar heuristics to try and match open reviews with
potential reviewers:
If there is overlap between the lines of code touched by the
patch-under-review and lines of code that a person has written, that
person may be a good reviewer.
If there is overlap between the files touched by the patch-under-review
and the source files that a person has made changes to, that person may
be a good reviewer.
The script provides a percentage for each of the above heuristics and
emails a summary. For example, a summary I received a few weeks ago
from the script is the following:
SUMMARY FOR kristof.beyls@arm.com (found 8 reviews):
[3.37%/41.67%] https://reviews.llvm.org/D46018 '[GlobalISel][IRTranslator] Split aggregates during IR translation' by Amara Emerson
[0.00%/100.00%] https://reviews.llvm.org/D46111 '[ARM] Enable misched for R52.' by Dave Green
[0.00%/50.00%] https://reviews.llvm.org/D45770 '[AArch64] Disable spill slot scavenging when stack realignment required.' by Paul Walker
[0.00%/40.00%] https://reviews.llvm.org/D42759 '[CGP] Split large data structres to sink more GEPs' by Haicheng Wu
[0.00%/25.00%] https://reviews.llvm.org/D45189 '[MachineOutliner][AArch64] Keep track of functions that use a red zone in AArch64MachineFunctionInfo and use that instead of checking for noredzone in the MachineOutliner' by Jessica Paquette
[0.00%/25.00%] https://reviews.llvm.org/D46107 '[AArch64] Codegen for v8.2A dot product intrinsics' by Oliver Stannard
[0.00%/12.50%] https://reviews.llvm.org/D45541 '[globalisel] Update GlobalISel emitter to match new representation of extending loads' by Daniel Sanders
[0.00%/6.25%] https://reviews.llvm.org/D44386 '[x86] Introduce the pconfig/enclv instructions' by Gabor Buella
The first percentage in square brackets is the percentage of lines in
the patch-under-review that changes lines that I wrote. The second
percentage is the percentage of files that I made at least some
changes to out of all of the files touched by the patch-under-review.
Both the script and the heuristics are far from perfect, but I've
heard positive feedback from the few colleagues the script has been
sending a summary to every day - hearing that this does help them to
quickly find patches-under-review they can help to review.
The script takes quite some time to run (I typically see it running
for 2 to 3 hours on weekdays when it gets started by a cron job early
in the morning). There are 2 reasons why it takes a long time:
The REST api into Phabricator isn't very efficient, i.e. a lot of
uninteresting data needs to be fetched. The script tries to reduce this
overhead partly by caching info it has fetched on previous runs, so as
to not have to refetch lots of Phabricator state on each run.
The script uses git blame to find for each line of code in the patch who
wrote the original line of code being altered. git blame is
sloooowww....
Anyway - to run this script:
First install a virtualenv as follows (using Python2.7 - Python3 is
almost certainly not going to work at the moment):
$ virtualenv venv
$ . ./venv/bin/activate
$ pip install Phabricator
Then to run the script, looking for open reviews that could be done by
X.Y@company.com, run (in the venv):
$ python ./find_interesting_reviews.py X.Y@company.com
Please note that "X.Y@company.com" needs to be the exact email address
(capitalization is important) that the git LLVM repository knows the
person as. Multiple email addresses can be specified on the command
line. Note that the script as is will email the results to all email
addresses specified on the command line - so be careful not to spam
people accidentally!
Differential Revision: https://reviews.llvm.org/D46192
llvm-svn: 332711
Summary:
Avoid assert/crash during liveness calculation in situations where the
incoming machine function has statically unreachable BBs.
Fixes PR37130.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46265
llvm-svn: 332707
Sorry, the commit comment for r332703 is completely broken.
My mind slipped - the right description would be:
In SystemZDAGToDAGISel::Select(), in the handling for SELECT_CCMASK:
Check if UpdateNodeOperands() returns a different SDNode and in that
case call ReplaceNode.
Review: Ulrich Weigand.
llvm-svn: 332706
This patch aims to match the changes introduced in gcc by
https://gcc.gnu.org/ml/gcc-cvs/2018-04/msg00534.html. The
IBT feature definition is removed, with the IBT instructions
being freely available on all X86 targets. The shadow stack
instructions are also being made freely available, and the
use of all these CET instructions is controlled by the module
flags derived from the -fcf-protection clang option. The hasSHSTK
option remains since clang uses it to determine availability of
shadow stack instruction intrinsics, but it is no longer directly used.
Comes with a clang patch (D46881).
Patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D46882
llvm-svn: 332705
Summary:
Fix a case where FoldBranchToCommonDest() would bail out from doing CSE
when encountering a debug intrinsic. Handle that by skipping past the
debug intrinsics.
Also, as a minor refactoring, rename checkCSEInPredecessor() to
tryCSEWithPredecessor() to make it a bit more clear that the function
may remove instructions.
Reviewers: fhahn, craig.topper, dblaikie, xbolva00
Reviewed By: fhahn, xbolva00
Subscribers: vsk, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D46635
llvm-svn: 332698
llvm::BitVector::const_set_bits_iterator is not formally a
ForwardIterator. Using it as such results in compile time errors on some
compilers:
FAILED: unittests/tools/llvm-exegesis/X86/CMakeFiles/LLVMExegesisX86Tests.dir/RegisterAliasingTest.cpp.obj
C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\xutility(967): error C2794: 'iterator_category': is not a member of any direct or indirect base class of 'std::iterator_traits<_InIt>'
with
[
_InIt=llvm::BitVector::const_set_bits_iterator
]
llvm-svn: 332697
For RISCV branch instructions, we need to preserve relocation types when linker
relaxation enabled, so then linker could modify offset when the branch offsets
changed.
We preserve relocation types by define shouldForceRelocation.
IsResolved return by evaluateFixup will always false when shouldForceRelocation
return true. It will make RISCV MC Branch Relaxation always relax 16-bit
branches to 32-bit form, even if the symbol actually could be resolved.
To avoid 16-bit branches always relax to 32-bit form when linker relaxation
enabled, we add a new parameter WasForced to indicate that the symbol actually
couldn't be resolved and not forced by shouldForceRelocation return true.
RISCVAsmBackend::fixupNeedsRelaxationAdvanced could relax branches with
unresolved symbols by (!IsResolved && !WasForced).
RISCV MC Branch Relaxation is needed because RISCV could perform 32-bit
to 16-bit transformation in MC layer.
Differential Revision: https://reviews.llvm.org/D46350
llvm-svn: 332696
CanProveNotTakenFirstIteration utility does not handle the case when
condition of the branch is a constant. Add its handling.
Reviewers: reames, anna, mkazantsev
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46996
llvm-svn: 332695
The Darwin build bot failed with:
```
llc -mcpu=skylake-avx512 -mtriple=x86_64-unknown-linux-gnu domain-reassignment-test.ll -o - | llvm-mc
--
Exit Code: 134
Command Output (stderr):
--
Assertion failed: (MAI->hasSingleParameterDotFile()), function EmitFileDirective, file lib/MC/MCAsmStreamer.cpp, line 1087.
```
Looks like this is because the `llvm-mc` command was missing a triple
directive and defaulting to MachO. Add the triple option.
llvm-svn: 332694
1. Define Myriad-specific ASan constants.
2. Add code to generate an outer loop that checks that the address is
in DRAM range, and strip the cache bit from the address. The
former is required because Myriad has no memory protection, and it
is up to the instrumentation to range-check before using it to
index into the shadow memory.
3. Do not add an unreachable instruction after the error reporting
function; on Myriad such function may return if the run-time has
not been initialized.
4. Add a test.
Differential Revision: https://reviews.llvm.org/D46451
llvm-svn: 332692
This reapplies commits: r330271, r330592, r330779.
[DEBUG] Initial adaptation of NVPTX target for debug info emission.
Summary:
Patch adds initial emission of the debug info for NVPTX target.
Currently, only .file and .loc directives are emitted, everything else is
commented out to not break the compilation of Cuda.
llvm-svn: 332689
Counting the number of instructions is both unintuitive and inaccurate.
On AArch64, this only affects the generated remarks and certain rare
pseudo-instructions, but it will have a bigger impact on other targets.
Differential Revision: https://reviews.llvm.org/D46921
llvm-svn: 332685
Summary:
The Closure allocated in the main loop is allocated on the stack. However,
later in the code its address is taken (and used for comparisons). This
obviously doesn't work. In fact, the Closure will get the same stack address
during every loop iteration, rendering the check that intended to identify
Closure conflicts entirely ineffective. Fix this bug by giving every Closure
a unique ID and using that for comparison. Alternatively, we could heap
allocate the closure object.
Fixes PR37396
FixesJuliaLang/julia#27032
Reviewers: craig.topper, guyblank
Reviewed By: craig.topper
Subscribers: vchuravy, llvm-commits
Differential Revision: https://reviews.llvm.org/D46800
llvm-svn: 332682
Summary:
We cannot simply delete IMPLICIT_DEF nodes. They may be used
later (e.g. by a PHI) and deleting them will cause later passes (e.g.
LiveVariables) to crash. However, it seems fine to ignore them for
purposes of the domain reassignment (as we do with PHI).
Fixes PR37430
FixesJuliaLang/julia#27080
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D46797
llvm-svn: 332680
Previously we emitted 20-byte SHA1 hashes. This is overkill
for identifying debug info records, and has the negative side
effect of making object files bigger and links slower. By
using only the last 8 bytes of a SHA1, we get smaller object
files and ~10% faster links.
This modifies the format of the .debug$H section by adding a new
value for the hash algorithm field, so that the linker will still
work when its object files have an old format.
Differential Revision: https://reviews.llvm.org/D46855
llvm-svn: 332669
Summary:
- Add wasm personality function
- Re-categorize the existing `isFuncletEHPersonality()` function into
two different functions: `isFuncletEHPersonality()` and
`isScopedEHPersonality(). This becomes necessary as wasm EH uses scoped
EH instructions (catchswitch, catchpad/ret, and cleanuppad/ret) but not
outlined funclets.
- Changed some callsites of `isFuncletEHPersonality()` to
`isScopedEHPersonality()` if they are related to scoped EH IR-level
stuff.
Reviewers: majnemer, dschuff, rnk
Subscribers: jfb, sbc100, jgravelle-google, eraman, JDevlieghere, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D45559
llvm-svn: 332667
notifyFailed method rather than passing in an error generator.
VSO::notifyFailed is responsible for notifying queries that they will not
succeed due to error. In practice the queries don't care about the details
of the failure, just the fact that a failure occurred for some symbols.
Having VSO::notifyFailed take care of this simplifies the interface.
llvm-svn: 332666
The prefix includes type kind, which is important to preserve. Two
different type leafs can easily have the same interior record contents
as another type.
We ran into this issue in PR37492 where a bitfield type record collided
with a const modifier record. Their contents were bitwise identical, but
their kinds were different.
llvm-svn: 332664
Summary:
There was some unfinished work started for offset tracking in CFLGraph by the author of implementation of Andersen algorithm. This work was completed and support for field sensitivity was added to the core of Andersen algorithm.
The performance results seem promising.
SPEC2006 int_base score was increased by 1.1 % (I compared clang 6.0 with clang 6.0 with this patch). The avergae compile time was increased by +- 1 % according my measures with small and medium C/C++ projects (I did not tested it on the large projects with milions of lines of code)
Reviewers: chandlerc, george.burgess.iv, rja
Reviewed By: rja
Subscribers: rja, llvm-commits
Differential Revision: https://reviews.llvm.org/D46282
llvm-svn: 332657
Patch #3 from VPlan Outer Loop Vectorization Patch Series #1
(RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
Expected to be NFC for the current inner loop vectorization path. It
introduces the basic algorithm to build the VPlan plain CFG (single-level
CFG, no hierarchical CFG (H-CFG), yet) in the VPlan-native vectorization
path using VPInstructions. It includes:
- VPlanHCFGBuilder: Main class to build the VPlan H-CFG (plain CFG without nested regions, for now).
- VPlanVerifier: Main class with utilities to check the consistency of a H-CFG.
- VPlanBlockUtils: Main class with utilities to manipulate VPBlockBases in VPlan.
Reviewers: rengolin, fhahn, mkuper, mssimpso, a.elovikov, hfinkel, aprantl.
Differential Revision: https://reviews.llvm.org/D44338
llvm-svn: 332654
Summary:
The logic of dispatch remains the same, but now DispatchUnit is a Stage (DispatchStage).
This change has the benefit of simplifying the backend runCycle() code.
The same logic applies, but it belongs to different components now. This is just a start,
eventually we will need to remove the call to the DispatchStage in Scheduler.cpp, but
that will be a separate patch. This change is mostly a renaming and moving of existing logic.
This change also encouraged me to remove the Subtarget (STI) member from the
Backend class. That member was used to initialize the other members of Backend
and to eventually call DispatchUnit::dispatch(). Now that we have Stages, we
can eliminate this by instantiating the DispatchStage with everything it needs
at the time of construction (e.g., Subtarget). That change allows us to call
DispatchStage::execute(IR) as we expect to call execute() for all other stages.
Once we add the Stage list (D46907) we can more cleanly call preExecute() on
all of the stages, DispatchStage, will probably wrap cycleEvent() in that
case.
Made some formatting and minor cleanups to README.txt. Some of the text
was re-flowed to stay within 80 cols.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb, courbet
Subscribers: mgorny, javed.absar, tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D46983
llvm-svn: 332652
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in https://reviews.llvm.org/D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332648
Currently debugify prints it's output to stdout,
with this patch all the output generated goes to stderr.
This change lets us use debugify without taking away
the ability to pipe the output to other llvm tools.
llvm-svn: 332642
Summary:
When lowering global address, lower the base as a TargetGlobal first then
create an SDNode for the offset separately and chain it to the address calculation
This optimization will create a DAG where the base address of a global access will
be reused between different access. The offset can later be folded into the immediate
part of the memory access instruction.
With this optimization we generate:
lui a0, %hi(s)
addi a0, a0, %lo(s) ; shared base address.
addi a1, zero, 20 ; 2 instructions per access.
sw a1, 44(a0)
addi a1, zero, 10
sw a1, 8(a0)
addi a1, zero, 30
sw a1, 80(a0)
Instead of:
lui a0, %hi(s+44) ; 3 instructions per access.
addi a1, zero, 20
sw a1, %lo(s+44)(a0)
lui a0, %hi(s+8)
addi a1, zero, 10
sw a1, %lo(s+8)(a0)
lui a0, %hi(s+80)
addi a1, zero, 30
sw a1, %lo(s+80)(a0)
Which will save one instruction per access.
Reviewers: asb, apazos
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, jordy.potman.lists, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, apazos, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D46989
llvm-svn: 332641
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in https://reviews.llvm.org/D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332640
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in https://reviews.llvm.org/D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332638
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in https://reviews.llvm.org/D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
Follow-up to:
https://reviews.llvm.org/rL332538
...because that change wasn't enough.
llvm-svn: 332637
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
Follow-up to:
https://reviews.llvm.org/rL332534
...because that change wasn't enough.
llvm-svn: 332636
Summary:
This patch implements MC support for tail psuedo instruction.
A follow-up patch implements the codegen support as well as handling of the indirect tail pseudo instruction.
Reviewers: asb, apazos
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, jordy.potman.lists, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, llvm-commits
Differential Revision: https://reviews.llvm.org/D46221
llvm-svn: 332634
Summary:
This patch adds a new internal variable
LLVM_RUNTIME_DISTRIBUTION_COMPONENTS which specifies distribution
components that are part of runtime projects, and thus should be exposed
from runtime configuraitons up into the top-level CMake configurations.
This is required for allowing runtime components to be included in
LLVM_DISTRIBUTION_COMPONENTS because we verify that the build and
install targets exist for every component specified for the
distribution.
Without this patch runtimes and builtins can only be included in
distributions in whole, not by component.
Reviewers: phosek
Reviewed By: phosek
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D46705
llvm-svn: 332631
This behavior has been the default for a long time, so the default value is On, however this can make it difficult to debug sanitizer failures, so we should have an option to turn it off.
llvm-svn: 332628
Summary:
The current StructurizeCFG pass only works for CFG with one exit. AMDGPUUnifyDivergentExitNodes combines multiple "return" blocks and/or "unreachable" blocks
to one exit block for the Structurizer to work. However, infinite loop is another kind of special "exit", and if we don't handle it, the case of multiple exits will prevent the structurizer from working.
In this work, for each infinite loop, we add a dummy edge to the "return" block, and thus the AMDGPUUnifyDivergentExitNodes pass will work with infinite loops.
This will make CFG with infinite loops be structurized.
Reviewer:
nhaehnle
Differential Revision:
https://reviews.llvm.org/D46340
llvm-svn: 332625
According to alive this is valid. I'm hoping to use this to make an assumption that the sign bit is zero after this sequence. The only way it wouldn't be is if the input was INT__MIN, but by preserving the flags we can make doing this to INT_MIN UB.
The nuw flags is weird because it creates such a contradiction that the original number would have to be positive meaning we could remove the select entirely, but we don't get that far.
Differential Revision: https://reviews.llvm.org/D46988
llvm-svn: 332623
The isReMaterlizable flag is somewhat confusing, unlike most other instruction
flags it is currently interpreted as a hint (mightBeRematerializable would be
a better name). While LUI is always rematerialisable, for an instruction like
ADDI it depends on its operands. TargetInstrInfo::isTriviallyReMaterializable
will call TargetInstrInfo::isReallyTriviallyReMaterializable, which in turn
calls TargetInstrInfo::isReallyTriviallyReMaterializableGeneric. We rely on
the logic in the latter to pick out instances of ADDI that really are
rematerializable.
The isReMaterializable flag does make a difference on a variety of test
programs. The recently committed remat.ll test case demonstrates how stack
usage is reduce and a unnecessary lw/sw can be removed. Stack usage in the
Proc0 function in dhrystone reduces from 192 bytes to 112 bytes.
For the sake of completeness, this patch also implements
RISCVRegisterInfo::isConstantPhysReg. Although this is called from a number of
places, it doesn't seem to result in different codegen for any programs I've
thrown at it. However, it is called in the rematerialisation codepath and it
seems sensible to implement something correct here.
Differential Revision: https://reviews.llvm.org/D46182
llvm-svn: 332617
entries to reach the target. Since these calls don't require type checks,
we can short-circuit them to their real targets.
Differential Revision: https://reviews.llvm.org/D46326
llvm-svn: 332610
Data directives such as .word, .half, .hword are currently parsed using
HexagonAsmParser::ParseDirectiveValue which effectively duplicates logic from
AsmParser::parseDirectiveValue. This patch deletes that duplicated logic in
favour of using addAliasForDirective.
Differential Revision: https://reviews.llvm.org/D46999
llvm-svn: 332607
Summary:
Warn on instructions that should have the same performance
characteristics according to the sched model but actually
differ in their benchmarks.
Next step: Make the display nicer to browse, I was thinking maybe html.
Reviewers: gchatelet
Subscribers: tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D46945
llvm-svn: 332601
Restructuring the code to measure latency and uops.
The end goal is to have this program spawn another process to deal with SIGILL and other malformed programs. It is not yet the case in this redesign, it is still the main program that runs the code (and may crash).
It now uses BitVector instead of Graph for performance reasons.
https://reviews.llvm.org/D46821
(with fixed ARM tests)
Authored by Guillaume Chatelet
llvm-svn: 332592
Summary:
Require DominatorTree when requiring/preserving LoopInfo in the old pass manager
BreakCriticalEdges tries to keep LoopInfo and DominatorTree updated if they
exist. However, since commit r321653 and r321805, to update LoopInfo we
must have a DominatorTree, or we will hit an assert.
To fix this we now make a couple of passes that only required/preserved
LoopInfo also require DominatorTree.
This solves PR37334.
Reviewers: eli.friedman, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D46829
llvm-svn: 332583
The existing comment said that the functions were available only
on GNU/Linux (and on certain Android versions), but only checked
T.isGNUEnvironment() which also is true on MinGW (for arch-windows-gnu
triplets), which doesn't have such functions.
Existing checks in the initialize function in TargetLibraryInfo.cpp
also use only T.isOSLinux() to check for glibc features.
This fixes use of stdio on MinGW.
Differential Revision: https://reviews.llvm.org/D47002
llvm-svn: 332581
Restructuring the code to measure latency and uops.
The end goal is to have this program spawn another process to deal with SIGILL and other malformed programs. It is not yet the case in this redesign, it is still the main program that runs the code (and may crash).
It now uses BitVector instead of Graph for performance reasons.
https://reviews.llvm.org/D46821
Authored by Guillaume Chatelet
llvm-svn: 332579
Summary:
The verifier accepts PHI nodes with multiple entries for the
same basic block, as long as the value is the same.
As seen in PR37203, SROA did not handle such PHI nodes properly
when speculating loads over the PHI, since it inserted multiple
loads in the predecessor block and changed the PHI into having
multiple entries for the same basic block, but with different
values.
This patch teaches SROA to reuse the same speculated load for
each PHI duplicate entry in such situations.
Resolves: https://bugs.llvm.org/show_bug.cgi?id=37203
Reviewers: uabelho, chandlerc, hfinkel, bkramer, efriedma
Reviewed By: efriedma
Subscribers: dberlin, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D46426
llvm-svn: 332577
The current integer widening does not support rewriting partial split slices in rewriteIntegerStore (and rewriteIntegerLoad).
This patch adds explicit checks for this case in isIntegerWideningViableForSlice.
Before r322533, splitting is allowed only for the whole-alloca slice and hence the above case is implicitly rejected by another check `if (DL.getTypeStoreSize(ValueTy) > Size)` because whole-alloca slice is larger than the partition.
Differential Revision: https://reviews.llvm.org/D46750
llvm-svn: 332575
These directives are recognised by gas. Support is added through the use of
addAliasForDirective.
Also match RISC-V gcc in preferring .half and .word for 16-bit and 32-bit data
directives.
llvm-svn: 332574
The FIXME comments were about preventing load folding to avoid a partial xmm update. But these instructions use GPR as input when the load isn't folded. This won't help prevent a partial xmm update.
llvm-svn: 332573
Fuchsia uses ELF as a file format and LLD as the linker so we can
use the same implementation as other ELF based platforms.
Differential Revision: https://reviews.llvm.org/D46991
llvm-svn: 332570
r332057 introduced distance() for ranges. Based on post-commit feedback,
this renames distance() to size(). The new size() is also only enabled
when the operation is O(1).
Differential Revision: https://reviews.llvm.org/D46976
llvm-svn: 332551
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332550
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332549
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332548
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332547
Summary:
Same as r332530, move WasmSymbol::dump to an implementation file to avoid linker
issues when the dump function is seen in the header, doesn't get eliminated, and
then linking fails because of the missing dependency.
<rdar://problem/40258137>
Reviewers: sbc100, ncw, paquette, vsk, dschuff
Subscribers: jgravelle-google, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D46985
llvm-svn: 332542
VSOs now track dependencies for materializing symbols. Each symbol must have its
dependencies registered with the VSO prior to finalization. Usually this will
involve registering the dependencies returned in
AsynchronousSymbolQuery::ResolutionResults for queries made while linking the
symbols being materialized.
Queries against symbols are notified that a symbol is ready once it and all of
its transitive dependencies are finalized, allowing compilation work to be
broken up and moved between threads without queries returning until their
symbols fully safe to access / execute.
Related utilities (VSO, MaterializationUnit, MaterializationResponsibility) are
updated to support dependence tracking and more explicitly track responsibility
for symbols from the point of definition until they are finalized.
llvm-svn: 332541
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332539
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332538
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332537
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332534
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332533
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332532
Summary:
r332305 added a use of llvm::wasm::toString in llvm::object::WasmSymbol::print,
which is in a header file. It also moves toString to BinaryFormat. This has the
unintended side-effect that any inclusion of Object/Wasm.h now relies on
toString, and needs to required_libraries = BinaryFormat. Thankfully most builds
don't fail with this because print just isn't used and gets eliminated, dropping
the required dependency in the process. Not all builds are so lucky.
Fix this issue by moving print to the corresponding .cpp file.
<rdar://problem/40258137>
Reviewers: sbc100, ncw, paquette
Subscribers: dschuff, jgravelle-google, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D46977
llvm-svn: 332530
This breaks the code which saves and restores LR, so we can't outline
without doing something more complicated for stack adjustment.
Found by inspection; we get lucky in most cases because getMemOpInfo
only handles STRWpost, not any other pre/post-increment forms. But it
hits a couple of artificial testcases in the tree.
Differential Revision: https://reviews.llvm.org/D46920
llvm-svn: 332529
As suggested by Fabian on PR37441, use PSHUFLW to extend shift amount types for use with PSRAD/PSRLD to reduce register pressure.
Some of this ideally would be done by combineTargetShuffle but its tricky to do as most of the shuffles are sharing inputs.
Differential Revision: https://reviews.llvm.org/D46959
llvm-svn: 332524
The getAtom() method wasn't doing what we needed in all cases. We want
the symbols for the function which defines that section. We can compute
this easily enough and we know that we have at most one function in each
section.
Once this lands I will revert rL331412 which is no longer needed.
Fixes PR37409
Differential Revision: https://reviews.llvm.org/D46970
llvm-svn: 332517
The cost computation assumes we do this correctly, but the actual
lowering was wrong.
Differential Revision: https://reviews.llvm.org/D46923
llvm-svn: 332514
Summary:
This is needed for the continuation of D46504,
to be able to store the timings.
Reviewers: george.karpenkov, NoQ, alexfh, sbenza
Reviewed By: alexfh
Subscribers: llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D46939
llvm-svn: 332506
Summary:
This is needed for the continuation of D46504,
to be able to store the timings.
Reviewers: george.karpenkov, NoQ, alexfh, sbenza
Reviewed By: alexfh
Subscribers: llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D46938
llvm-svn: 332505
Summary:
Although this is not stricly required, i would very much prefer
not to have known random precision losses along the way.
Reviewers: george.karpenkov, NoQ, alexfh, sbenza
Reviewed By: george.karpenkov
Subscribers: llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D46937
llvm-svn: 332504
Summary: We have just used `.sys` suffix for the previous timer, this is clearly a typo
Reviewers: george.karpenkov, NoQ, alexfh, sbenza
Reviewed By: alexfh
Subscribers: llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D46936
llvm-svn: 332503
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we make those fixes.
llvm-svn: 332501
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we make those fixes.
llvm-svn: 332500
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we make those fixes.
llvm-svn: 332499
As i64 types are not legal on 32-bit targets, insert these into a suitable zero vector and use the packed vXi64<->FP conversion instructions instead.
Fixes PR3163.
Differential Revision: https://reviews.llvm.org/D43441
llvm-svn: 332498
In post-commit review for r332416, Paul Robinson pointed out that the
test for -debugify-each is not checking what it needs to.
This commit tightens up the test.
llvm-svn: 332497
Summary:
Before this patch, signal handling wasn't signal safe. This leads to real-world
crashes. It used ManagedStatic inside of signals, this can allocate and can lead
to unexpected state when a signal occurs during llvm_shutdown (because
llvm_shutdown destroys the ManagedStatic). It also used cl::opt without custom
backing storage. Some de-allocation was performed as well. Acquiring a lock in a
signal handler is also a great way to deadlock.
We can't just disable signals on llvm_shutdown because the signals might do
useful work during that shutdown. We also can't just disable llvm_shutdown for
programs (instead of library uses of clang) because we'd have to then mark the
pointers as not leaked and make sure all the ManagedStatic uses are OK to leak
and remain so.
Move all of the code to lock-free datastructures instead, and avoid having any
of them in an inconsistent state. I'm not trying to be fancy, I'm not using any
explicit memory order because this code isn't hot. The only purpose of the
atomics is to guarantee that a signal firing on the same or a different thread
doesn't see an inconsistent state and crash. In some cases we might miss some
state (for example, we might fail to delete a temporary file), but that's fine.
Note that I haven't touched any of the backtrace support despite it not
technically being totally signal-safe. When that code is called we know
something bad is up and we don't expect to continue execution, so calling
something that e.g. sets errno is the least of our problems.
A similar patch should be applied to lib/Support/Windows/Signals.inc, but that
can be done separately.
Fix r332428 which I reverted in r332429. I originally used double-wide CAS
because I was lazy, but some platforms use a runtime function for that which
thankfully failed to link (it would have been bad for signal handlers
otherwise). I use a separate flag to guard the data instead.
<rdar://problem/28010281>
Reviewers: dexonsmith
Subscribers: steven_wu, llvm-commits
llvm-svn: 332496
Summary: This change will help us turn the DispatchUnit into its own stage.
Reviewers: andreadb, RKSimon, courbet
Reviewed By: andreadb, courbet
Subscribers: mgorny, tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D46916
llvm-svn: 332493
As part of merging stores we check that fusing the nodes does not
cause a cycle due to one candidate store being indirectly dependent on
another store (this may happen via chained memory copies). This is
done by searching if a store is a predecessor to another store's
value.
Prune the search at the candidate search's root node which is a
predecessor to all candidate stores. This reduces the
size of the subgraph searched in large basic blocks.
Reviewers: jyknight
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D46955
llvm-svn: 332490
As far as I can tell from revision history, there's no good reason to call
these files .so instead of .dll in Windows, so use the normal extension.
Also change PipSquak from SHARED to MODULE -- it's never passed to
target_link_libraries() and only loaded via dlopen(), so MODULE is more
appropriate. This makes it possible to delete a workaround for SHARED ldflags
being not quite right as well.
No intended behavior change.
https://reviews.llvm.org/D46898
llvm-svn: 332487
For regular SVE vector operands, this patch introduces a more
sensible diagnostic when the vector has a wrong suffix (e.g. z0.s vs z0.b).
For example:
add z0.s, z1.s, z2.b -> invalid element width
^_____^
mismatch
For the vector-with-shift/extend (e.g. z0.s, uxtw #2) this patch takes
a slightly different approach and instead returns a 'invalid operand'
if the element size is not as expected. This is because the diagnostics
are more specificied to suggest using the right shift/extend suffix. This
is a trade-off not to introduce more operand classes and still provide
useful diagnostics for LD1 and PRF instructions.
For example:
ld1w z1.s, p0/z, [x0, z0.s] -> invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw)'
ld1w z1.d, p0/z, [x0, z0.s] -> invalid operand
^________________^
mismatch
For gather prefetches, both 'z0.s' and 'z0.d' would be allowed:
prfw #0, p0, [x0, z0.s] -> invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #2'
prfw #0, p0, [x0, z0.d] -> invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #2'
Without this change, the diagnostic would unnecessarily suggest a
different element size:
prfw #0, p0, [x0, z0.s] -> invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #2'
Reviewers: SjoerdMeijer, aemerson, fhahn, samparker, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D46688
llvm-svn: 332483
Keep loads and stores together (target defines how many loads
and stores to gang up), such that it will help in pairing
and vectorization.
Differential Revision https://reviews.llvm.org/D46477
llvm-svn: 332482
The canonicalization was restricted to shuffle masks with
a 1-to-1 mapping to the constant vector, but that disqualifies
the common splat pattern. This is part of solving PR37463:
https://bugs.llvm.org/show_bug.cgi?id=37463
llvm-svn: 332479
The module ID numbering typically starts at 0 (in both the new and old
LTO APIs, used by linkers). Make llvm-lto consistent with that.
Split out of D46699.
llvm-svn: 332476
Summary:
A recent patch ([[ https://reviews.llvm.org/rL331587 | rL331587 ]]) to Capture Tracking taught it that the `launder_invariant_group` intrinsic captures its argument only by returning it. Unfortunately, BasicAA still considered every call instruction as a possible escape source and hence concluded that the result of a `launder_invariant_group` call cannot alias any local non-escaping value. This led to [[ https://bugs.llvm.org/show_bug.cgi?id=37458 | bug 37458 ]].
This patch updates the relevant check for escape sources in BasicAA.
Reviewers: Prazek, kuhar, rsmith, hfinkel, sanjoy, xbolva00
Reviewed By: hfinkel, xbolva00
Subscribers: JDevlieghere, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D46900
llvm-svn: 332466
Revision 332390 introduced a FetchStage class in llvm-mca.
By design, FetchStage owns all the instructions in-flight in the OoO Backend.
Before this change, new instructions were added to a DenseMap indexed by
instruction id. The problem with using a DenseMap is that elements are not
ordered by key. This was causing a massive slow down in method
FetchStage::postExecute(), which searches for instructions retired that can be
deleted.
This patch replaces the DenseMap with a std::map ordered by instruction index.
At the end of every cycle, we search for the first instruction which is not
marked as "retired", and we remove all the previous instructions before it.
This works well because instructions are retired in-order.
Before this patch, a debug build of llvm-mca (on my Ryzen linux machine) took
~8.0 seconds to simulate 3000 iterations of a x86 dot-product (a `vmulps,
vpermilps, vaddps, vpermilps, vaddps` sequence). With this patch, it now takes
~0.8s to run all the 3000 iterations.
llvm-svn: 332461
Summary: If file stream arg is not captured and source is fopen, we could replace IO calls by unlocked IO ("_unlocked" function variants) to gain better speed,
Reviewers: efriedma, RKSimon, spatel, sanjoy, hfinkel, majnemer, lebedev.ri, rja
Reviewed By: rja
Subscribers: rja, srhines, efriedma, lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D45736
llvm-svn: 332452
A lot of the models still have too many InstRW overrides for these new classes - this needs cleaning up but I wanted to get the classes in first
llvm-svn: 332451
So that it can be shared with other passes that may end up doing the same
thing.
Differential Revision: https://reviews.llvm.org/D45874
llvm-svn: 332450
We currently handle all aggregates by creating one large LLT, and letting the
legalizer deal with splitting them up. However using this approach means that
we can't support big endian code correctly.
This patch changes the way that the IRTranslator deals with aggregate values,
by splitting them up into their constituent element values. To do this, parts
of the translator need to be modified to deal with multiple VRegs for a single
Value.
A new Value to VReg mapper is introduced to help keep compile time under
control, currently there is no measurable impact on CTMark despite the extra
code being generated in some cases.
Patch is based on the original work of Tim Northover.
Differential Revision: https://reviews.llvm.org/D46018
llvm-svn: 332449
Add support for this target hook, covering MIPS, microMIPS and MIPSR6, along
with some tests. Also add missing getOppositeBranchOpc() cases exposed by the
tests.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D46794
llvm-svn: 332446
This patch re-introduces the "S" inline assembler constraint. This matches
an absolute symbolic address or a label reference. The primary use case is
asm("adrp %0, %1\n\t"
"add %0, %0, :lo12:%1" : "=r"(addr) : "S"(&var));
I say re-introduces as it seems like "S" was implemented in the original
AArch64 backend, but it looks like it wasn't carried forward to the merged
backend. The original implementation had A and L modifiers that could be
used to print ":lo12:" to the string. It looks like gcc doesn't use these
and :lo12: is expected to be written in the inline assembly string so I've
not implemented A and L. Clang already supports the S modifier.
Fixes PR37180
Differential Revision: https://reviews.llvm.org/D46745
llvm-svn: 332444
Summary:
This sequence ends the CDATA block so any characters after that are no
longer escaped. This can be fixed by replacing "]]>" with "]]]]><![CDATA[>".
Reviewers: cmatthews
Reviewed By: cmatthews
Differential Revision: https://reviews.llvm.org/D46886
llvm-svn: 332440
Summary:
SelectionDAGLegalize::ExpandNode() inserts an ISD::MUL when lowering a
BR_JT opcode. While many backends optimize this multiply into a shift, e.g.
the MIPS backend currently always lowers this into a sequence of
load-immediate+multiply+mflo in MipsSETargetLowering::lowerMulDiv().
I initially changed the multiply to a shift in the MIPS backend but it
turns out that would not have handled the MIPSR6 case and was a lot more
code than doing it in LegalizeDAG.
I believe performing this simple optimization in LegalizeDAG instead of
each individual backend is the better solution since this also fixes other
backeds such as MSP430 which calls the multiply runtime function
__mspabi_mpyi without this patch.
Reviewers: sdardis, atanasyan, pftbest, asl
Reviewed By: sdardis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45760
llvm-svn: 332439
A catchswitch must be the only non-phi instruction in its basic block;
attempting to move a retain or release into a catchswitch basic block
will result in invalid IR. Explicitly mark a CFG hazard in this case to
prevent the code motion.
Differential Revision: https://reviews.llvm.org/D46482
llvm-svn: 332430
Summary:
Before this patch, signal handling wasn't signal safe. This leads to real-world
crashes. It used ManagedStatic inside of signals, this can allocate and can lead
to unexpected state when a signal occurs during llvm_shutdown (because
llvm_shutdown destroys the ManagedStatic). It also used cl::opt without custom
backing storage. Some de-allocation was performed as well. Acquiring a lock in a
signal handler is also a great way to deadlock.
We can't just disable signals on llvm_shutdown because the signals might do
useful work during that shutdown. We also can't just disable llvm_shutdown for
programs (instead of library uses of clang) because we'd have to then mark the
pointers as not leaked and make sure all the ManagedStatic uses are OK to leak
and remain so.
Move all of the code to lock-free datastructures instead, and avoid having any
of them in an inconsistent state. I'm not trying to be fancy, I'm not using any
explicit memory order because this code isn't hot. The only purpose of the
atomics is to guarantee that a signal firing on the same or a different thread
doesn't see an inconsistent state and crash. In some cases we might miss some
state (for example, we might fail to delete a temporary file), but that's fine.
Note that I haven't touched any of the backtrace support despite it not
technically being totally signal-safe. When that code is called we know
something bad is up and we don't expect to continue execution, so calling
something that e.g. sets errno is the least of our problems.
A similar patch should be applied to lib/Support/Windows/Signals.inc, but that
can be done separately.
<rdar://problem/28010281>
Reviewers: dexonsmith
Subscribers: aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D46858
llvm-svn: 332428
The instructions using registers should be DBG_VALUE and normal
instructions. Use isDebugValue() to filter out DBG_VALUE and add
an assert to ensure there is no other kind of debug instructions
using the registers.
Differential Revision: https://reviews.llvm.org/D46739
Patch by Hsiangkai Wang.
llvm-svn: 332427
It doesn't matter much this late in the pipeline, but one place that
does check for it is the function alignment code.
Differential Revision: https://reviews.llvm.org/D46373
llvm-svn: 332415
It is legal for the type passed to isLegalAddressingMode to be
unsized or, more specifically, VoidTy. In this case, we must
check the legality of load / stores for all legal types. Directly
trying to call getTypeStoreSize is incorrect, and leads to breakage
in e.g. Loop Strength Reduction. This change guards against that
behaviour.
Differential Revision: https://reviews.llvm.org/D40405
llvm-svn: 332409
WasmObjectWriter mostly operates with function segments offsets that do
not include their size fields. WasmObjectFile needs to have and provide
this information to the lld to maintain proper
R_WEBASSEMBLY_FUNCTION_OFFSET_I32 relocations entries.
Patch by Yury Delendik
Differential Revision: https://reviews.llvm.org/D46763
llvm-svn: 332406