The AMDGPU lowering for unconstrained G_FDIV sometimes needs to
introduce a mode switch in the middle, so it's helpful to have
constrained instructions available to legalize this. Right now nothing
is preventing reordering of the mode switch with the other
instructions in the expansion.
Confusingly, these were unrelated and had different semantics. The
G_PTR_MASK instruction predates the llvm.ptrmask intrinsic, but has a
different format. G_PTR_MASK only allows clearing the low bits of a
pointer, and only a constant number of bits. The ptrmask intrinsic
allows an arbitrary mask. Replace G_PTR_MASK to match the intrinsic.
Only selects the cases that look like the old instruction. More work
is needed to select the general case. Also new legalization code is
still needed to deal with the case where the incoming mask size does
not match the pointer size, which has a specified behavior in the
langref.
This was looking for a compare condition, and copying the compare
flags. I don't think this was ever correct outside of certain min/max
patterns which aren't checked, but this probably predates select
instructions having fast math flags.
Now that load/store alignment is required, we no longer need most
of them. Also switch the getLoadStoreAlignment() helper to return
Align instead of MaybeAlign.
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
Summary:
ConstantExprs involving operations on <1 x Ty> could translate into MIR
that failed to verify with:
*** Bad machine code: Reading virtual register without a def ***
The problem was that translate(const Constant &C, Register Reg) had
recursive calls that passed the same Reg in for the translation of a
subexpression, but without updating VMap for the subexpression first as
translate(const Constant &C, Register Reg) expects.
Fix this by using the same translateCopy helper function that we use for
translating Instructions. In some cases this causes extra G_COPY
MIR instructions to be generated.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45576
Reviewers: arsenm, volkan, t.p.northover, aditya_nandakumar
Subscribers: jvesely, wdng, nhaehnle, rovka, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78378
This fixes a verifier failure on a bot:
http://green.lab.llvm.org/green/job/test-suite-verify-machineinstrs-aarch64-O0-g/
```
*** Bad machine code: MBB has duplicate entries in its successor list. ***
- function: foo
- basic block: %bb.5 indirectgoto (0x7fe3d687ca08)
```
One of the GCC torture suite tests (pr70460.c) has an indirectbr instruction
which has duplicate blocks in its destination list.
According to the langref this is allowed:
> Blocks are allowed to occur multiple times in the destination list, though
> this isn’t particularly useful.
(https://www.llvm.org/docs/LangRef.html#indirectbr-instruction)
We don't allow this in MIR. So, when we translate such an instruction, the
verifier screams.
This patch makes `translateIndirectBr` check if a successor has already been
added to a block. If the successor is present, it is skipped rather than added
twice.
Differential Revision: https://reviews.llvm.org/D79609
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
Summary:
Similar to the CallLowering class used for lowering LLVM IR calls to MIR calls,
we introduce a separate class for lowering LLVM IR inline asm to MIR INLINEASM.
There is no functional change yet, all existing tests should pass.
Reviewers: arsenm, dsanders, aemerson, volkan, t.p.northover, paquette
Reviewed By: aemerson
Subscribers: gargaroff, wdng, mgorny, rovka, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78316
Summary:
As a follow up to https://reviews.llvm.org/D29014, add translation
support for freeze.
Introduce a new generic instruction G_FREEZE and translate freeze to it.
Reviewers: dsanders, aqjune, arsenm, aditya_nandakumar, t.p.northover, lebedev.ri, paquette, aemerson
Reviewed By: aqjune, arsenm
Subscribers: fhahn, lebedev.ri, wdng, rovka, hiraditya, jfb, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77795
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: stoklund, sdesmalen, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77272
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
This reverts commit b3297ef051.
This change is incorrect. The current semantic of null in the IR is a
pointer with the bitvalue 0. It is not a cast from an integer 0, so
this should preserve the pointer type.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
Summary:
Add new generic MIR opcodes G_SADDSAT etc. Add support in IRTranslator
for translating the saturating add/subtract intrinsics to the new
opcodes.
Reviewers: aemerson, dsanders, paquette, arsenm
Subscribers: jvesely, wdng, nhaehnle, rovka, hiraditya, volkan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76600
https://reviews.llvm.org/D67133
While investigating some non determinism (CSE doesn't produce wrong
code, it just doesn't CSE some times) in GISel CSE on an out of tree
target, I realized that the core issue was that there were lots of code
that mutates (setReg, setRegClass etc), but doesn't notify observers
(CSE in this case but this could be any other observer). In order to
make the Observer be available in various parts of code and to avoid
having to thread it through various API, the MachineFunction now has the
observer as field. This allows it to be easily used in helper functions
such as constrainOperandRegClass.
Also added some invariant verification method in CSEInfo which can
catch these issues (when CSE is enabled).
This is a one off special case, since actually implementing full inline asm
support will be much more involved. This lets us compile a lot more code as a
common simple case.
Differential Revision: https://reviews.llvm.org/D74201
This reverts commit ed29dbaafa.
I'm backing out D68945, which as the discussion for D73526 shows, doesn't
seem to handle the -O0 path through the codegen backend correctly. I'll
reland the patch when a fix is worked out, apologies for all the churn.
The two parent commits are part of this revert too.
Conflicts:
llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
llvm/test/DebugInfo/X86/dbg-addr-dse.ll
SelectionDAGBuilder conflict is due to a nearby change in e39e2b4a79
that's technically unrelated. dbg-addr-dse.ll conflicted because
41206b61e3 (legitimately) changes the order of two lines.
There are further modifications to dbg-value-func-arg.ll: it landed after
the patch being reverted, and I've converted indirection to be represented
by the isIndirect field rather than DW_OP_deref.
We can have geps that have a scalar base pointer, and a vector index value, which
means that the base pointer must be splatted into a vector of pointers.
This fixes crashes on arm64 GlobalISel with optimizations enabled.
This was dropping the invariant metadata on dead argument loads, so
they weren't deleted.
Atomics still need to be fixed the same way. Also, apparently store
was never preserving dereferencable which should also be fixed.
We're planning to remove the shufflemask operand from ShuffleVectorInst
(D72467); fix GlobalISel so it doesn't depend on that Constant.
The change to prelegalizercombiner-shuffle-vector.mir happens because
the input contains a literal "-1" in the mask (so the parser/verifier
weren't really handling it properly). We now treat it as equivalent to
"undef" in all contexts.
Differential Revision: https://reviews.llvm.org/D72663
As the extern_weak target might be missing, resolving to the absolute
address zero, we can't use the normal direct PC-relative branch
instructions (as that would result in relocations out of range).
Improve the classifyGlobalFunctionReference method to set
MO_DLLIMPORT/MO_COFFSTUB, and simplify the existing code in
AArch64TargetLowering::LowerCall to use the return value from
classifyGlobalFunctionReference for these cases.
Add code in both AArch64FastISel and GlobalISel/IRTranslator to
bail out for function calls to extern weak functions on windows,
to let SelectionDAG handle them.
This matches what was done for X86 in 6bf108d77a.
Differential Revision: https://reviews.llvm.org/D71721
Summary:
This patch fixes a few issues when large arrays are allocated on the
stack. Currently, clang has inconsistent behaviour, for debug builds
there is an assertion failure when the array size on stack is around 2GB
but there is no assertion when the stack is around 8GB. For release
builds there is no assertion, the compilation succeeds but generates
incorrect code. The incorrect code generated is due to using
int/unsigned int instead of their 64-bit counterparts. This patch,
1) Removes the assertion in frame legality check.
2) Converts int/unsigned int in some places to the 64-bit variants. This
helps in generating correct code and removes the inconsistent behaviour.
3) Adds a test which runs without optimisations.
Reviewers: sdesmalen, efriedma, fhahn, aemerson
Reviewed By: efriedma
Subscribers: eli.friedman, fpetrogalli, kristof.beyls, hiraditya,
llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70496
AMDGPU needs to know the FP mode for the function to answer this
correctly when this is removed from the subtarget.
AArch64 had to make this more complicated by using this from an IR
hook, so add an IR typed overload.
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary:
G_GEP is rather poorly named. It's a simple pointer+scalar addition and
doesn't support any of the complexities of getelementptr. I therefore
propose that we rename it. There's a G_PTR_MASK so let's follow that
convention and go with G_PTR_ADD
Reviewers: volkan, aditya_nandakumar, bogner, rovka, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, hiraditya, jrtc27, atanasyan, arphaman, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69734