blocks. We still don't have consensus if we should try to change clang or
the standard, but llvm should work with compilers that implement the current
standard and mangle those functions.
llvm-svn: 175267
This change lets us bootstrap LLVM/Clang under ASan and MSan. It contains
fixes for 2 issues:
- X86JIT reads return address from stack, which MSan does not know is
initialized.
- bugpoint tests run binaries with RLIMIT_AS. This does not work with certain
Sanitizers.
We are no longer including config.h in Compiler.h with this change.
llvm-svn: 174306
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
- Use unsigned literals when the desired result is unsigned. This mostly allows unsigned/signed mismatch warnings to be less noisy even if they aren't on by default.
- Remove misplaced llvm_unreachable.
- Add static to a declaration of a function on MSVC x86 only.
- Change some instances of calling a static function through a variable to simply calling that function while removing the unused variable.
llvm-svn: 150364
the same value) to this variable. This code could be refactored, but it doesn't
matter since the old JIT is going away. Add tsan annotations to ignore the
race.
llvm-svn: 145745
remove start/finishGVStub and the BufferState helper class from the
MachineCodeEmitter interface. It has the side-effect of not setting the
indirect global writable and then executable on ARM, but that shouldn't be
necessary.
llvm-svn: 91464
way for each TargetJITInfo subclass to allocate its own stubs. This
means stubs aren't as exactly-sized anymore, but it lets us get rid of
TargetJITInfo::emitFunctionStubAtAddr(), which lets ARM and PPC
support the eager JIT, fixing http://llvm.org/PR4816.
* Rename the JITEmitter's stub creation functions to describe the kind
of stub they create. So far, all of them create lazy-compilation
stubs, but they sometimes get used when far-call stubs are needed.
Fixing http://llvm.org/PR5201 will involve fixing this.
llvm-svn: 89715
The large code model is documented at
http://www.x86-64.org/documentation/abi.pdf and says that calls should
assume their target doesn't live within the 32-bit pc-relative offset
that fits in the call instruction.
To do this, we turn off the global-address->target-global-address
conversion in X86TargetLowering::LowerCall(). The first attempt at
this broke the lazy JIT because it can separate the movabs(imm->reg)
from the actual call instruction. The lazy JIT receives the address of
the movabs as a relocation and needs to record the return address from
the call; and then when that call happens, it needs to patch the
movabs with the newly-compiled target. We could thread the call
instruction into the relocation and record the movabs<->call mapping
explicitly, but that seems to require at least as much new
complication in the code generator as this change.
To fix this, we make lazy functions _always_ go through a call
stub. You'd think we'd only have to force lazy calls through a stub on
difficult platforms, but that turns out to break indirect calls
through a function pointer. The right fix for that is to distinguish
between calls and address-of operations on uncompiled functions, but
that's complex enough to leave for someone else to do.
Another attempt at this defined a new CALL64i pseudo-instruction,
which expanded to a 2-instruction sequence in the assembly output and
was special-cased in the X86CodeEmitter's emitInstruction()
function. That broke indirect calls in the same way as above.
This patch also removes a hack forcing Darwin to the small code model.
Without far-call-stubs, the small code model requires things of the
JITMemoryManager that the DefaultJITMemoryManager can't provide.
Thanks to echristo for lots of testing!
llvm-svn: 88984
interrupt instruction, which shouldn't arise any other way). 0xcd is
also used by JITMemoryManager to initialize the buffer to garbage,
which means it could appear following a noreturn call even when
that is not a stub, confusing X86CompilationCallback2. PR 4929.
llvm-svn: 81888
for ELF to work.
2) RIP addressing: Use SIB bytes for absolute relocations where RegBase=0,
IndexReg=0.
3) The JIT can get the real address of cstpools and jmptables during
code emission, fix that for object code emission
llvm-svn: 78129
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
llvm-svn: 75379
that has not been JIT'd yet, the callee is put on a list of pending functions
to JIT. The call is directed through a stub, which is updated with the address
of the function after it has been JIT'd. A new interface for allocating and
updating empty stubs is provided.
Add support for removing the ModuleProvider the JIT was created with, which
would otherwise invalidate the JIT's PassManager, which is initialized with the
ModuleProvider's Module.
Add support under a new ExecutionEngine flag for emitting the infomration
necessary to update Function and GlobalVariable stubs after JITing them, by
recording the address of the stub and the name of the GlobalValue. This allows
code to be copied from one address space to another, where libraries may live
at different virtual addresses, and have the stubs updated with their new
correct target addresses.
llvm-svn: 64906
variable is moved to the execution engine. The JIT calls the TargetJITInfo
to allocate thread local storage. Currently, only linux/x86 knows how to
allocate thread local global variables.
llvm-svn: 58142