rnb_err_t
RNBRemote::HandlePacket_stop_process (const char *p)
{
if (!DNBProcessInterrupt(m_ctx.ProcessID()))
HandlePacket_last_signal (NULL);
return rnb_success;
}
In the call to DNBProcessInterrupt we did:
nub_bool_t
DNBProcessInterrupt(nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Interrupt();
return false;
}
This would always return false. It would cause HandlePacket_stop_process to always call "HandlePacket_last_signal (NULL);" which would send an extra stop reply packet _if_ the process is stopped. On a machine with enough cores, it would call DNBProcessInterrupt(...) and then HandlePacket_last_signal(NULL) so quickly that it will never send out an extra stop reply packet. But if the machine is slow enough or doesn't have enough cores, it could cause the call to HandlePacket_last_signal() to actually succeed and send an extra stop reply packet. This would cause problems up in GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse() where it would get the first stop reply packet and then possibly return or execute an async packet. If it returned, then the next packet that was sent will get the second stop reply as its response. If it executes an async packet, the async packet will get the wrong response.
To fix this I did the following:
1 - in debugserver, I fixed "bool MachProcess::Interrupt()" to return true if it sends the signal so we avoid sending the stop reply twice on slower machines
2 - Added a log line to RNBRemote::HandlePacket_stop_process() to say if we ever send an extra stop reply so we will see this in the darwin console output if this does happen
3 - Added response validators to StringExtractorGDBRemote so that we can verify some responses to some packets.
4 - Added validators to packets that often follow stop reply packets like the "m" packet for memory reads, JSON packets since "jThreadsInfo" is often sent immediately following a stop reply.
5 - Modified GDBRemoteCommunicationClient::SendPacketAndWaitForResponseNoLock() to validate responses. Any "StringExtractorGDBRemote &response" that contains a valid response verifier will verify the response and keep looking for correct responses up to 3 times. This will help us get back on track if we do get extra stop replies. If a StringExtractorGDBRemote does not have a response validator, it will accept any packet in response.
6 - In GDBRemoteCommunicationClient::SendPacketAndWaitForResponse we copy the response validator from the "response" argument over into m_async_response so that if we send the packet by interrupting the running process, we can validate the response we actually get in GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse()
7 - Modified GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse() to always check for an extra stop reply packet for 100ms when the process is interrupted. We were already doing this because we might interrupt a process with a \x03 packet, yet the process was in the process of stopping due to another reason. This race condition could cause an extra stop reply packet because the GDB remote protocol says if a \x03 packet is sent while the process is stopped, we should send a stop reply packet back. Now we always check for an extra stop reply packet when we manually interrupt a process.
The issue was showing up when our IDE would attempt to set a breakpoint while the process is running and this would happen:
--> \x03
<-- $T<stop reply 1>
--> z0,AAAAA,BB (set breakpoint)
<-- $T<stop reply 1> (incorrect extra stop reply packet)
--> c
<-- OK (response from z0 packet)
Now all packet traffic was off by one response. Since we now have a validator on the response for "z" packets, we do this:
--> \x03
<-- $T<stop reply 1>
--> z0,AAAAA,BB (set breakpoint)
<-- $T<stop reply 1> (Ignore this because this can't be the response to z0 packets)
<-- OK -- (we are back on track as this is a valid response to z0)
...
As time goes on we should add more packet validators.
<rdar://problem/22859505>
llvm-svn: 265086
We had some #ifdefs that were looking for the wrong #defines and as a result
debugserver didn't have support for certain simulators. This patch resolves
the problem.
llvm-svn: 258365
at each public stop to improve performance a bit. Most of the
information lldb needed was already in the jThreadsInfo response;
complete that information and catch a few cases where we could still
fall back to getting the information via discrete memory reads.
debugserver adds 'associated_with_dispatch_queue' and 'dispatch_queue_t
keys to the jThreadsInfo response for all the threads. lldb needs the
dispatch_queue_t value. And associated_with_dispatch_queue helps to
identify which threads definitively don't have any queue information so
lldb doesn't try to do memory reads to get that information just because
it was absent in the jThreadsInfo response.
Remove the queue information from the questionmark (T) packet. We'll
get the information for all threads via the jThreadsInfo response -
sending the information for the stopping thread (on all the private
stops, plus the less frequent public stop) was unnecessary information
being sent over the wire.
SystemRuntimeMacOSX will try to get information about queues by asking
the Threads for them, instead of reading memory.
ProcessGDBRemote changes to recognize the new keys being sent in the
jThreadsInfo response. Changes to ThreadGDBRemote to track the new
information. Also, when a thread is marked as definitively not
associated with a libdispatch queue, don't fall back to the system
runtime to try memory reads to find the queue name / kind / ID etc.
<rdar://problem/23309359>
llvm-svn: 257453
keys before we print the libdispatch queues keys (qname, qkind, qserialnum)
to make it easier to read the packet by hand. No function difference, just
reordering the keys in the output.
llvm-svn: 257229
"qserial" to "qserialnum" because "qserial" looks a lot like the
queue type (either 'serial' or 'concurrent') and can be confusing
to read through. debugserver passes these up either in the questionmark
("T") packet, or in the response to the jThreadsInfo packet.
llvm-svn: 257121
debugserver. thread-pcs has a comma separated list of base 16
addresses - the current pc value for every thread in the process.
It is a partner of the "threads:" key where a list of thread IDs
is given. The pc values in thread-pcs correspond one-to-one with
the thread IDs in the threads list.
This is a part of performance work. When lldb is instruction
stepping / fast stepping over a range of addresses for e.g. a "next"
command, and it steps in to another function, lldb will put a
breakpoint on the return address and continue the process. Before
it calls continue, it calls Thread::SetupForResume on all the
threads, and SetupForResume needs to get the current pc value for
every thread to see if any are at a breakpoint site.
The result is that issuing a "c" continue requires that we send
"read pc register" packets for every thread.
We may do this sequence of step-into-function / continue-to-get-out
many times for a single user-visible "next" or "step" command, and
with highly multithreaded programs, we are sending many extra
packets to get all the thread values.
I looked at including this data in the "jstopinfo" JSON that
we already have in the T packet. But there are three problems that
would make this increase the size of the T packet significantly.
First, numbers in JSON are base 10. Second, a proper JSON would
have something like "thread_pcs": { "34224331112":383772734222, ...}
for thread-id 34224331112 and pc 383772734222 - so we're including
a whole extra copy of the thread id in addition to the pc. Third,
the JSON text is hex-ascii'fied so the size of it is doubled.
In one example,
threads:585db8,585dc7,585dc8,585dc9,585dca,585dce;thread-pcs:100001400,7fff8badc6de,7fff8badcff6,7fff8badc6de,7fff8badc6de,7fff8badc6de;
The "thread-pcs" adds 86 characters - 136 characters for both
threads and thread-pcs. Doing this in JSON would look like
threads={"5791160":4294972416,"5791175":140735536809694,"5791176":140735536812022,"5791177":140735536809694,"5791178":140735536809694,"5791182":140735536809694}
or 160 characters -- or 320 characters once it is hex-asciified.
Given that it's 86 characters vrs 320, I went with the old style
approach. I've seen real world programs that have up to 60 threads
in them, so this could result in vastly larger packets if it
was all done in the JSON with hex-ascii expansion.
If we had an all-JSON T packet, where we didn't need to hex-ascii
encode anything, that would have been the better approach. But
we'd already have a list of threads in JSON at that point so
the additional text wouldn't be too bad.
I'm working on finishing the patches to lldb to use this data;
will commit those once I've had a chance to test them more. But
I wanted to commit the debugserver bits which are more
straightforward.
<rdar://problem/21963031>
llvm-svn: 255711
include two stack frames worth of unwind information instead of
just one -- the unwinder is trying to fetch two stack frames in
more instances now and we're sending extra memory reads resulting
in a performance degredation while stepping.
llvm-svn: 255417
Let the editor also clean up whitespace for that file.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13816
llvm-svn: 251979
This fixes the OSX build for XCode versions older than 7 by skipping
references to LC_VERSION_MIN_TVOS and LC_VERSION_MIN_WATCHOS if
TARGET_OS_TV or TARGET_OS_WATCH aren't defined.
Reviewed by: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14036
llvm-svn: 251172
previous release. Most of the diffs are duplication in the xcode
project file caused by adding a "debugserver-mini" target. Jim
Ingham added support for a new SPI needed to request app launches
on iOS. Greg Clayton added code to indicate the platform of the
binary (macosx, ios, watchos, tvos) based on Mach-O load commands.
Jason Molenda added code so debugserver will identify when it is
running on a tvos/watchos device to lldb.
llvm-svn: 251091
Summary:
Add dependencies to the custom commands so that they get
re-executed as needed.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13580
llvm-svn: 249860
debugserver to match. "gcc" is now "ehframe" and "gdb" is now
"debugserver". Because this is debugserver, what we call the Process
Plugin register numbers up in lldb are the debugserver register
numbers down here - they are the register numbers that debugserver
will use to refer to these registers over the gdb-remote protocol.
debugserver was already reporting the registers with the key
"ehframe"; this change is just cleaning up the internal variable
names to match.
llvm-svn: 247751
"gcc" register numbers are now correctly referred to as "ehframe"
register numbers. In almost all cases, ehframe and dwarf register
numbers are identical (the one exception is i386 darwin where ehframe
regnums were incorrect).
The old "gdb" register numbers, which I incorrectly thought were
stabs register numbers, are now referred to as "Process Plugin"
register numbers. This is the register numbering scheme that the
remote process controller stub (lldb-server, gdbserver, core file
support, kdp server, remote jtag devices, etc) uses to refer to the
registers. The process plugin register numbers may not be contiguous
- there are remote jtag devices that have gaps in their register
numbering schemes.
I removed all of the enums for "gdb" register numbers that we had
in lldb - these were meaningless - and I put LLDB_INVALID_REGNUM
in all of the register tables for the Process Plugin regnum slot.
This change is almost entirely mechnical; the one actual change in
here is to ProcessGDBRemote.cpp's ParseRegisters() which parses the
qXfer:features:read:target.xml response. As it parses register
definitions from the xml, it will assign sequential numbers as the
eRegisterKindLLDB numbers (the lldb register numberings must be
sequential, without any gaps) and if the xml file specifies register
numbers, those will be used as the eRegisterKindProcessPlugin
register numbers (and those may have gaps). A J-Link jtag device's
target.xml does contain a gap in register numbers, and it only
specifies the register numbers for the registers after that gap.
The device supports many different ARM boards and probably selects
different part of its register file as appropriate.
http://reviews.llvm.org/D12791
<rdar://problem/22623262>
llvm-svn: 247741
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
Summary:
Comparing m_page_size against kInvalidPageSize was resulting in
a warning about comparing integers with different signs. Since
kInvalidPageSize isn't used anywhere outside of MachVMMemory.cpp,
we can readily transform it into a static const vm_size_t with
the correct value to avoid the sign comparison warnings.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12519
llvm-svn: 246606
Summary:
This was previously only established within debugserver, but
there is a use of the VLA extension in source/Host/macosx/Symbols.cpp,
so ignore this warning globally.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12515
llvm-svn: 246605
Older OSX versions don't define NSOperatingSystemVersion, so building
lldb gets: error: unknown type name 'NSOperatingSystemVersion'
This patch fixes the build by having GetOSVersionNumbers return false if
__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ < 101000, causing lldb to
behave the same as it did before the commit.
Reviewed by: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12396
llvm-svn: 246138
Summary:
This was no longer needed and hasn't been needed since r143244
in 2011. This removes everything associated with generating
or using it.
Reviewers: clayborg, jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11971
llvm-svn: 244850
major, minor, and patchlevel in the qHostInfo reply.
Document that qHostInfo may report major/minor/patch
separately / in addition to the version: combination.
<rdar://problem/22125465>
llvm-svn: 244716
This patch adds a test for ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED
around the code which requires 10.10 support to link. Without this, lldb
gets unresolved references to _csr_check and _rootless_allows_task_for_pid.
Reviewed by: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11668
llvm-svn: 243715
system, make a couple of additional checks to see if the
attach was denied via the System Integrity Protection that
is new in Mac OS X 10.11. If so, return a special E87
error code to indicate this to lldb.
Up in lldb, if we receive the E87 error code, be specific
about why the attach failed.
Also detect the more common case of general attach failure
and print a better error message than "lost connection".
I believe this code will all build on Mac OS X 10.10 systems.
It may not compile or run on earlier versions of the OS.
None of this should build on other non-darwin systems.
llvm-svn: 243511
Summary:
This replaces (void)x; usages where they x was subsequently
involved in an assertion with this macro to make the
intent more clear.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11451
llvm-svn: 243074
Summary:
No longer rely on cmake to set DEBUGSERVER_VERSION_STR,
but now generate the _vers.c file like xcode does
and include the generated file into the build on Mac OS X.
This fixes the cmake Mac OS X build after an earlier change
by Jason Molenda.
Reviewers: clayborg, jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11450
llvm-svn: 243072
Changed the "jthreads" key/value in the stop reply packets to be "jstopinfo". This JSON only contains threads with valid stop reasons and allows us not to have to ask about other threads via qThreadStopInfo when we are stepping. The "jstopinfo" only gets sent if there are more than one thread since the stop reply packet contains all the info needed for a single thread.
Added a Process::WillPublicStop() in case process subclasses want to do any extra gathering for public stops. For ProcessGDBRemote, we end up sending a jThreadsInfo packet to gather all expedited registers, expedited memory and MacOSX queue information. We only do this for public stops to minimize the packets we send when we have multiple private stops. Multiple private stops happen when a source level single step, step into or step out run the process multiple times while implementing the stepping, and none of these private stops make it out to the UI via notifications because they are private stops.
llvm-svn: 242593
frame, don't go any further, in RNBRemote::SendStopReplyPacketForThread.
These are the memory pre-fetches in the T05 packet and are
included in every private stop that lldb does. lldb needs, at most,
the caller stack frame so we're sending more data than needed by
including additional stack memory prefetches in this reply packet.
Once we've stopped for a public stop, we're going to do a jThreadsInfo
which will include the stack memory prefetches for all threads,
including the one which had the stop reason.
llvm-svn: 242380
This allows stepping operations that don't ever do a public stop to get all the info they need without having to send a jThreadsInfo packet since those tend to be large.
This patch will be followed by a patch that will detect when we do a public stop, and when that happens we will send a jThreadsInfo packet at that time to get all expedited registers and memory.
llvm-svn: 242352
vm_kernel_page_size appears to not be defined on OSX Mavericks, so the
build fails. This patch fixes the build by calculating the pagesize if
_VM_PAGE_SIZE_H_ is not defined.
llvm-svn: 242114
jGetLoadedDynamicLibrariesInfos. This packet is similar to
qXfer:libraries:read except that lldb supplies the number of solibs
that should be reported about, and the start address for the list
of them. At the initial process launch we'll read the full list
of solibs linked by the process -- at this point we could be using
qXfer:libraries:read -- but on subsequence solib-loaded notifications,
we'll be fetching a smaller number of solibs, often only one or two.
A typical Mac/iOS GUI app may have a couple hundred different
solibs loaded - doing all of the loads via memory reads takes
a couple of megabytes of traffic between lldb and debugserver.
Having debugserver summarize the load addresses of all the solibs
and sending it in JSON requires a couple of hundred kilobytes
of traffic. It's a significant performance improvement when
communicating over a slower channel.
This patch leaves all of the logic for loading the libraries
in DynamicLoaderMacOSXDYLD -- it only call over ot ProcesGDBRemote
to get the JSON result.
If the jGetLoadedDynamicLibrariesInfos packet is not implemented,
the normal technique of using memory read packets to get all of
the details from the target will be used.
<rdar://problem/21007465>
llvm-svn: 241964
proc_set_wakemon_params() to raise the limit on the # of wakeups
per second that are acceptable before the system may send an
EXC_RESOURCE signal to debugserver.
<rdar://problem/19631512>
llvm-svn: 241553