Dangling probes are the probes associated to an empty block. This usually happens when all real instructions are optimized away from the block. There is a problem with dangling probes during the offline counts processing. The way the sample profiler works is that samples collected on the first physical instruction following a probe will be counted towards the probe. This logically equals to treating the instruction next to a probe as if it is from the same block of the probe. In the dangling probe case, the real instruction following a dangling probe actually starts a new block, and samples collected on the new block may cause issues when counted towards the empty block.
To mitigate this issue, we first try to move around a dangling probe inside its owning block. If there are still native instructions preceding the probe in the same block, we can then use them as a place holder to collect samples for the probe. A pass is added to walk each block backwards looking for probes not followed by any real instruction and moving them before the first real instruction. This is done right before the object emission.
If we are unlucky to find such in-block preceding instructions for a probe, the solution we are taking is to tag such probe as dangling so that the samples reported for them will not be trusted by the compiler. We leave it up to the counts inference algorithm to get such probes a reasonable count. The number `UINT64_MAX` is used to mark sample count as collected for a dangling probe.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95962
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
This is an attempt to improve handling of partial overlaps in case of unaligned begin\end.
Existing implementation just bails out if it encounters such cases. Even when it doesn't I believe existing code checking alignment constraints is not quite correct. It tries to ensure alignment of the "later" start/end offset while should be preserving relative alignment between earlier and later start/end.
The idea behind the change is simple. When start/end is not aligned as we wish instead of bailing out let's adjust it as necessary to get desired alignment.
I'll update with performance results as measured by the test-suite...it's still running...
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D93530
statepoint intrinsic can be used in invoke context,
so it should be handled in visitCallBase to cover both call and invoke.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D97833
IR symbol table does not parse inline asm. A symbol only referenced by inline
asm is not in the IR symbol table, so LTO does not know that the definition (in
another translation unit) is referenced and may internalize it, even if that
definition has `__attribute__((used))` (which lowers to `llvm.compiler.used` on
ELF targets since D97446).
```
// cabac.c
__attribute__((used)) const uint8_t ff_h264_cabac_tables[...] = {...};
// h264_cabac.c
asm("lea ff_h264_cabac_tables(%rip), %0" : ...);
```
`__attribute__((used))` is the recommended way to tell the compiler there may
be inline asm references, so the usage is perfectly fine. This patch
conservatively sets the `FB_used` bit on `llvm.compiler.used` symbols to work
around the IR symbol table limitation. Note: before D97446, Clang never emitted
symbols in the `llvm.compiler.used` list, so this change does not punish any
Clang emitted global object.
Without the patch, `ff_h264_cabac_tables` may be assigned to a non-external
partition and get internalized. Then we will get a linker error because the
`cabac.c` definition is not exposed.
Differential Revision: https://reviews.llvm.org/D97755
See pr46990(https://bugs.llvm.org/show_bug.cgi?id=46990). LICM should not sink store instructions to loop exit blocks which cross coro.suspend intrinsics. This breaks semantic of coro.suspend intrinsic which return to caller directly. Also this leads to use-after-free if the coroutine is freed before control returns to the caller in multithread environment.
This patch disable promotion by check whether loop contains coro.suspend intrinsics.
This is a resubmit of D86190.
Disabling LICM for loops with coroutine suspension is a better option not only for correctness purpose but also for performance purpose.
In most cases LICM sinks memory operations. In the case of coroutine, sinking memory operation out of the loop does not improve performance since coroutien needs to get data from the frame anyway. In fact LICM would hurt coroutine performance since it adds more entries to the frame.
Differential Revision: https://reviews.llvm.org/D96928
The compiler needs to mark register $x0 as live in for the following case.
$x1 = ADDXri $sp, 16, 0
BL @spam, csr_darwin_aarch64_aapcs, implicit-def dead $lr, implicit $sp, implicit $x0, implicit killed $x1, implicit-def $sp, implicit-def dead $x0
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D95267
This is a mess, but this is hopefully no-functional-change.
The 'Prev' descriptor is only used for min/max recurrences
or when starting a match from a phi, so it should not be a
factor when propagating FMF for fmul/fadd.
The API is confusing (and should be reduced in subsequent steps)
because the "UnsafeAlgebraInst" appears to actually be a placeholder
for a recurrence that does NOT have FMF, but we still want to
treat it as reassociative.
Make sure we preserve info about passed arguments as implicit uses, to
make sure later passes still have access to this information.
This fixes a mis-compile where the machine-combiner would pick an
incorrect free register.
Probably should have done this before landing, but I forgot.
Basic idea is to avoid using the SCEV predicate when it doesn't buy us anything. Also happens to set us up for handling non-add recurrences in the future if desired.
LSR goes to some lengths to schedule IV increments such that %iv and %iv.next never need to overlap. This is fairly fundamental to LSRs cost model. LSR assumes that an addrec can be represented with a single register. If %iv and %iv.next have to overlap, then that assumption does not hold.
The bug - which this patch is fixing - is that LSR only does this scheduling for IVs which it inserts, but it's cost model assumes the same for existing IVs that it reuses. It will rewrite existing IV users such that the no-overlap property holds, but will not actually reschedule said IV increment.
As you can see from the relatively lack of test updates, this doesn't actually impact codegen much. The main reason for doing it is to make a follow up patch series which improves post-increment use and scheduling easier to follow.
Differential Revision: https://reviews.llvm.org/D97219
Even though the implementation in emitAtomicCmpSwapW() was correct, it made
Valgrind report an error. Instead of using a RISBG on CmpVal, an LL[CH]R can
be made on the OldVal, and the problem is avoided.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D97604
This is a NFC with respect to the generated code. But it fixes a crash
when using -debug, because of the position in the enum CALL_RVMARKER
nodes were treated as memops. That caused a crash when printing
CALL_RVMARKER nodes.
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (LLD 13 (D96914); GNU ld 2.37 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker does not let `__start_/__stop_` references retain their sections.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on COFF/Mach-O are not affected.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D97649
Honor always_inline attribute when processing -amdgpu-inline-max-bb.
It was lost during the ports of the heuristic. There is no reason
to honor inline hint, but not always inline.
Differential Revision: https://reviews.llvm.org/D97790
This is almost purely NFC, it just fits more obviously in the flow of the code now that we've standardized on the index different approach. The non-NFC bit is that because of canceling the VariableOffsets in the subtract, we can now handle the case where both sides involve a common variable offset. This isn't an "interesting" improvement; it just happens to fall out of the natural code structure.
One subtle point - the placement of this above the BaseAlias check is important in the original code as this can return NoAlias even when we can't find a relation between the bases otherwise.
Also added some enhancement TODOs noticed while understanding the existing code.
Note: This is slightly different than the LGTMed version. I fixed the "inbounds" issue Nikita noticed with the original code in e6e5ef4 and rebased this to include the same fix.
Differential Revision: https://reviews.llvm.org/D97520
VirtRegRewriter may sometimes fail to correctly apply the kill flag where necessary,
which causes unecessary code gen on PowerPC. This patch fixes the way masks for
defined lanes are computed and the way mask for used lanes is computed.
Contact albion.fung@ibm.com instead of author for problems related to this commit.
Differential Revision: https://reviews.llvm.org/D92405
This was pointed out in review of D97520 by Nikita, but existed in the original code as well.
The basic issue is that a decomposed GEP expression describes (potentially) more than one getelementptr. The "inbounds" derived UB which justifies this aliasing rule requires that the entire offset be composed of "inbounds" geps. Otherwise, as can be seen in the recently added and changes in this patch test, we can end up with a large commulative offset with only a small sub-offset actually being "inbounds". If that small sub-offset lies within the object, the result was unsound.
We could potentially be fancier here, but for the moment, simply be conservative when any of the GEPs parsed aren't inbounds.
Before we used the same argument as the entry point. The resume partial
function might want to use a different ABI for its context argument
Differential Revision: https://reviews.llvm.org/D97333
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.
> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
> which indicates the call is implicitly followed by a marker
> instruction and an implicit retainRV/claimRV call that consumes the
> call result. In addition, it emits a call to
> @llvm.objc.clang.arc.noop.use, which consumes the call result, to
> prevent the middle-end passes from changing the return type of the
> called function. This is currently done only when the target is arm64
> and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
> with the operand bundle in the IR and removes the inserted calls after
> processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
> operand bundle. It doesn't remove the operand bundle on the call since
> the backend needs it to emit the marker instruction. The retainRV and
> claimRV calls are emitted late in the pipeline to prevent optimization
> passes from transforming the IR in a way that makes it harder for the
> ARC middle-end passes to figure out the def-use relationship between
> the call and the retainRV/claimRV calls (which is the cause of
> PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
> nothing in the callee prevents it from being paired up with the
> retainRV/claimRV call in the caller. It then inserts a release call if
> claimRV is attached to the call since autoreleaseRV+claimRV is
> equivalent to a release. If it cannot find an autoreleaseRV call, it
> tries to transfer the operand bundle to a function call in the callee.
> This is important since the ARC optimizer can remove the autoreleaseRV
> returning the callee result, which makes it impossible to pair it up
> with the retainRV/claimRV call in the caller. If that fails, it simply
> emits a retain call in the IR if retainRV is attached to the call and
> does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
> constant value if the call has the operand bundle. This ensures the
> call always has at least one user (the call to
> @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
> multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
> calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808
This reverts commit ed4718eccb.
Some instructions (especially mov+pop instructions) were setting the
wrong operands. For example, the pop instruction had the register set as
a source operand while it is a destination operand (the value is loaded
into the register).
I have found these issues using the machine verifier and using manual
code inspection.
Differential Revision: https://reviews.llvm.org/D97159
The previous expansion used SBCI, which is incorrect because the NEGW
pseudo instruction accepts a DREGS operand (2xGPR8) and SBCI only allows
LD8 registers. One solution could be to correct the NEGW pseudo
instruction, but another solution is to use a different instruction
(sbc) that does accept a GPR8 register and therefore allows more freedom
to the register allocator.
The output now matches avr-gcc for the following code:
int foo(int n) {
return -n;
}
I've found this issue using the machine instruction verifier: it was
complaining about the wrong register class in NEGWRd.mir.
Differential Revision: https://reviews.llvm.org/D97131
These aliases are sometimes used in assembly code and make the code more
readable. They are supported by avr-gcc too.
Differential Revision: https://reviews.llvm.org/D96492
Refactor insertion of the asserting ops. This enables using them for
AMDGPU.
This code should essentially be the same for every target. Mips, X86
and ARM all have different code there now, but this seems to be an
accident. The assignment functions are called with different types
than they would be in the DAG, so this is all likely an assortment of
hacks to get around that.
* Add amdgcn_strict_wqm intrinsic.
* Add a corresponding STRICT_WQM machine instruction.
* The semantic is similar to amdgcn_strict_wwm with a notable difference that not all threads will be forcibly enabled during the computations of the intrinsic's argument, but only all threads in quads that have at least one thread active.
* The difference between amdgc_wqm and amdgcn_strict_wqm, is that in the strict mode an inactive lane will always be enabled irrespective of control flow decisions.
Reviewed By: critson
Differential Revision: https://reviews.llvm.org/D96258
* Introduce the new intrinsic amdgcn_strict_wwm
* Deprecate the old intrinsic amdgcn_wwm
The change is done for consistency as the "strict"
prefix will become an important, distinguishing factor
between amdgcn_wqm and amdgcn_strictwqm in the future.
The "strict" prefix indicates that inactive lanes do not
take part in control flow, specifically an inactive lane
enabled by a strict mode will always be enabled irrespective
of control flow decisions.
The amdgcn_wwm will be removed, but doing so in two steps
gives users time to switch to the new name at their own pace.
Reviewed By: critson
Differential Revision: https://reviews.llvm.org/D96257
While the underlying instruction is called image_msaa_load,
the resource must be x component only.
Rename the intrinsic for clarity.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D97829
When commit da108b4ed4 introduced
the CHECK-NEXT directive, it added logic to skip to the next line when
printing a diagnostic if the current matching position is at the end of
a line. This was fine while FileCheck did not support regular expression
but since it does now it can be confusing when the pattern to match
starts with the expectation of a newline (e.g. CHECK-NEXT: {{\n}}foo).
It is also inconsistent with the column information in the diagnostic
which does point to the end of line.
This commit removes this logic altogether, such that failure to match
diagnostic for such cases would show the end of line and be consistent
with the column information. The commit also adapts all existing
testcases accordingly.
Note to reviewers: An alternative approach would be to restrict the code
to only skip to the next line if the first character of the pattern is
known not to match a whitespace-like character. This would respect the
original intent but keep the inconsistency in terms of column info and
requires more code. I've only chosen this current approach by laziness
and would be happy to restrict the logic instead.
Reviewed By: jdenny, jhenderson
Differential Revision: https://reviews.llvm.org/D93341
In some rare circumstances we can be using an undef register for a
compare. When folded into a CBZ/CBNZ the undef flags are lost, leading
to machine verifier problems. This propagates the existing flags to the
new instruction.
The WebAssembly text and binary formats have different operand orders
for the "type" and "table" fields of call_indirect (and
return_call_indirect). In LLVM we use the binary order for the MCInstr,
but when we produce or consume the text format we should use the text
order. For compilation units targetting WebAssembly 1.0 (without the
reference types feature), we omit the table operand entirely.
Differential Revision: https://reviews.llvm.org/D97761
This function isn't exercised in lit tests today today according to
the code coverage report. But will be after the tests in D97543 and
D97559.
Posting this patch to help a crash that Fraser hit.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97582
This is a part of https://reviews.llvm.org/D95835.
One issue is about origin load optimization: see the
comments of useCallbackLoadLabelAndOrigin
@gbalats This change may have some conflicts with your 8bit change. PTAL the change at visitLoad.
Reviewed By: morehouse, gbalats
Differential Revision: https://reviews.llvm.org/D97570
This addresses ~50 clang-tidy warnings on dfsan instrumentation pass.
It also contains some refactoring (all non-functional changes) to eliminate some variables and simplify code.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D97714
This patch allows generating TLS variables in assembly files on AIX.
Initialized and external uninitialized variables are generated with the
.csect pseudo-op and local uninitialized variables are generated with
the .comm/.lcomm pseudo-ops. The patch also adds a check to
explicitly say that TLS is not yet supported on AIX.
Reviewed by: daltenty, jasonliu, lei, nemanjai, sfertile
Originally patched by: bsaleil
Commandeered by: NeHuang
Differential Revision: https://reviews.llvm.org/D96184
This merges more AMDGPU ABI lowering code into the generic call
lowering. Start cleaning up by factoring away more of the pack/unpack
logic into the buildCopy{To|From}Parts functions. These could use more
improvement, and the SelectionDAG versions are significantly more
complex, and we'll eventually have to emulate all of those cases too.
This is mostly NFC, but does result in some minor instruction
reordering. It also removes some of the limitations with mismatched
sizes the old code had. However, similarly to the merge on the input,
this is forcing gfx6/gfx7 to use the gfx8+ ABI (which is what we
actually want, but SelectionDAG is stuck using the weird emergent
ABI).
This also changes the load/store size for stack passed EVTs for
AArch64, which makes it consistent with the DAG behavior.
This fixes two bugs in `WebAssemblyExceptionInfo` grouping, created by
D97247. These two bugs are not easy to split into two different CLs,
because tests that fail for one also tend to fail for the other.
- In D97247, when fixing `ExceptionInfo` grouping by taking out
the unwind destination' exception from the unwind src's exception, we
just iterated the BBs in the function order, but this was incorrect;
this changes it to dominator tree preorder. Please refer to the
comments in the code for the reason and an example.
- After this subexception-taking-out fix, there still can be remaining
BBs we have to take out. When Exception B is taken out of Exception A
(because EHPad B is the unwind destination of EHPad A), there can
still be BBs within Exception A that are reachable from Exception B,
which also should be taken out. Please refer to the comments in the
code for more detailed explanation on why this can happen. To make
this possible, this splits `WebAssemblyException::addBlock` into two
parts: adding to a set and adding to a vector. We need to iterate on
BBs within a `WebAssemblyException` to fix this, so we add BBs to sets
first. But we add BBs to vectors later after we fix all incorrectness
because deleting BBs from vectors is expensive. I considered removing
the vector from `WebAssemblyException`, but it was not easy because
this class has to maintain a similar interface with `MachineLoop` to
be wrapped into a single interface `SortRegion`, which is used in
CFGSort.
Other misc. drive-by fixes:
- Make `WebAssemblyExceptionInfo` do not even run when wasm EH is not
used or the function doesn't have any EH pads, not to waste time
- Add `LLVM_DEBUG` lines for easy debugging
- Fix `preds` comments in cfg-stackify-eh.ll
- Fix `__cxa_throw`'s signature in cfg-stackify-eh.ll
Fixes https://github.com/emscripten-core/emscripten/issues/13554.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97677