hint) the loop unroller replaces the llvm.loop.unroll.count metadata with
llvm.loop.unroll.disable metadata to prevent any subsequent unrolling
passes from unrolling more than the hint indicates. This patch fixes
an issue where loop unrolling could be disabled for other loops as well which
share the same llvm.loop metadata.
llvm-svn: 213900
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
llvm-svn: 213864
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
llvm-svn: 213859
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.
llvm-svn: 213396
Summary:
Converting outermost zext(a) to sext(a) causes worse code when the
computation of zext(a) could be reused. For example, after converting
... = array[zext(a)]
... = array[zext(a) + 1]
to
... = array[sext(a)]
... = array[zext(a) + 1],
the program computes sext(a), which is actually unnecessary. I added one
test in split-gep-and-gvn.ll to illustrate this scenario.
Also, with r211281 and r211084, we annotate more "nuw" tags to
computation involving CUDA intrinsics such as threadIdx.x. These
annotations help with splitting GEP a lot, rendering the benefit we get
from this reverted optimization only marginal.
Test Plan: make check-all
Reviewers: eliben, meheff
Reviewed By: meheff
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D4542
llvm-svn: 213209
not properly handle the case where the predecessor block was the entry block to
the function. The only in-tree client of this is JumpThreading, which worked
around the issue in its own code. This patch moves the solution into the helper
so that JumpThreading (and other clients) do not have to replicate the same fix
everywhere.
llvm-svn: 212875
This is the one remaining place I see where passing
isSafeToSpeculativelyExecute a DataLayout pointer might matter (at least for
loads) -- I think I got the others in r212720. Most of the other remaining
callers of isSafeToSpeculativelyExecute only use it for call sites (or
otherwise exclude loads).
llvm-svn: 212730
isSafeToSpeculativelyExecute can optionally take a DataLayout pointer. In the
past, this was mainly used to make better decisions regarding divisions known
not to trap, and so was not all that important for users concerned with "cheap"
instructions. However, now it also helps look through bitcasts for
dereferencable loads, and will also be important if/when we add a
dereferencable pointer attribute.
This is some initial work to feed a DataLayout pointer through to callers of
isSafeToSpeculativelyExecute, generally where one was already available.
llvm-svn: 212720
isDereferenceablePointer should not give up upon encountering any bitcast. If
we're casting from a pointer to a larger type to a pointer to a small type, we
can continue by examining the bitcast's operand. This missing capability
was noted in a comment in the function.
In order for this to work, isDereferenceablePointer now takes an optional
DataLayout pointer (essentially all callers already had such a pointer
available). Most code uses isDereferenceablePointer though
isSafeToSpeculativelyExecute (which already took an optional DataLayout
pointer), and to enable the LICM test case, LICM needs to actually provide its DL
pointer to isSafeToSpeculativelyExecute (which it was not doing previously).
llvm-svn: 212686
If both instructions to be replaced are marked invariant the resulting
instruction is invariant.
rdar://13358910
Fix by Erik Eckstein!
llvm-svn: 211801
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
llvm-svn: 211710
Fixes exponential compilation complexity in PR19835, caused by
LICM::sink not handling the following pattern well:
f = op g
e = op f, g
d = op e
c = op d, e
b = op c
a = op b, c
When an instruction with N uses is sunk, each of its operands gets N
new uses (all of them - phi nodes). In the example above, if a had 1
use, c would have 2, e would have 4, and g would have 8.
llvm-svn: 211673
This patch add code to remove unreachable blocks from function
as they may cause jump threading to stuck in infinite loop.
Differential Revision: http://reviews.llvm.org/D3991
llvm-svn: 211103
r199771 accidently broke the logic that makes sure that SROA only splits
load on byte boundaries. If such a split happens, some bits get lost
when reassembling loads of wider types, causing data corruption.
Move the width check up to reject such splits early, avoiding the
corruption. Fixes PR19250.
Patch by: Björn Steinbrink <bsteinbr@gmail.com>
llvm-svn: 211082
[This is resubmitting r210721, which was reverted due to suspected breakage
which turned out to be unrelated].
Some extra review comments were addressed. See D4090 and D4147 for more details.
The Clang change that produces this metadata was committed in r210667
Patch by Mark Heffernan.
llvm-svn: 211076
This patch is to move GlobalMerge pass from Transform/Scalar
to CodeGen, because GlobalMerge depends on TargetMachine.
In the mean time, the macro INITIALIZE_TM_PASS is also moved
to CodeGen/Passes.h. With this fix we can avoid making
libScalarOpts depend on libCodeGen.
llvm-svn: 210951
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
llvm-svn: 210903
Enable value forwarding for loads from `calloc()` without an intervening
store.
This change extends GVN to handle the following case:
%1 = tail call noalias i8* @calloc(i64 1, i64 4)
%2 = bitcast i8* %1 to i32*
; This load is trivially constant zero
%3 = load i32* %2, align 4
This is analogous to the handling for `malloc()` in the same places.
`malloc()` returns `undef`; `calloc()` returns a zero value. Note that
it is correct to return zero even for out of bounds GEPs since the
result of such a GEP would be undefined.
Patch by Philip Reames!
llvm-svn: 210828
See http://reviews.llvm.org/D4090 for more details.
The Clang change that produces this metadata was committed in r210667
Patch by Mark Heffernan.
llvm-svn: 210721
Pass initialization requires to initialize TargetMachine for back-end
specific passes. This commit creates a new macro INITIALIZE_TM_PASS to
simplify this kind of initialization.
llvm-svn: 210641
This commit is to improve global merge pass and support global symbol merge.
The global symbol merge is not enabled by default. For aarch64, we need some
more back-end fix to make it really benifit ADRP CSE.
llvm-svn: 210640
For each array index that is in the form of zext(a), convert it to sext(a)
if we can prove zext(a) <= max signed value of typeof(a). The conversion
helps to split zext(x + y) into sext(x) + sext(y).
Reviewed in http://reviews.llvm.org/D4060
llvm-svn: 210444
zext(a + b) != zext(a) + zext(b) even if a + b >= 0 && b >= 0.
e.g., a = i4 0b1111, b = i4 0b0001
zext a + b to i8 = zext 0b0000 to i8 = 0b00000000
(zext a to i8) + (zext b to i8) = 0b00001111 + 0b00000001 = 0b00010000
llvm-svn: 210439
Most issues are on mishandling s/zext.
Fixes:
1. When rebuilding new indices, s/zext should be distributed to
sub-expressions. e.g., sext(a +nsw (b +nsw 5)) = sext(a) + sext(b) + 5 but not
sext(a + b) + 5. This also affects the logic of recursively looking for a
constant offset, we need to include s/zext into the context of the searching.
2. Function find should return the bitwidth of the constant offset instead of
always sign-extending it to i64.
3. Stop shortcutting zext'ed GEP indices. LLVM conceptually sign-extends GEP
indices to pointer-size before computing the address. Therefore, gep base,
zext(a + b) != gep base, a + b
Improvements:
1. Add an optimization for splitting sext(a + b): if a + b is proven
non-negative (e.g., used as an index of an inbound GEP) and one of a, b is
non-negative, sext(a + b) = sext(a) + sext(b)
2. Function Distributable checks whether both sext and zext can be distributed
to operands of a binary operator. This helps us split zext(sext(a + b)) to
zext(sext(a) + zext(sext(b)) when a + b does not signed or unsigned overflow.
Refactoring:
Merge some common logic of handling add/sub/or in find.
Testing:
Add many tests in split-gep.ll and split-gep-and-gvn.ll to verify the changes
we made.
llvm-svn: 210291
Handle "X + ~X" -> "-1" in the function Value *Reassociate::OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
This patch implements:
TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
Patch by Rahul Jain!
Differential Revision: http://reviews.llvm.org/D3835
llvm-svn: 209973
This is an enhancement to SeparateConstOffsetFromGEP. With this patch, we can
extract a constant offset from "s/zext and/or/xor A, B".
Added a new test @ext_or to verify this enhancement.
Refactoring the code, I also extracted some common logic to function
Distributable.
llvm-svn: 209670