These can have different relocations in ELF. In particular both:
b.eq global
ldr x0, global
are valid, giving different relocations. The only possible way to distinguish
them is via a different fixup, so the operands had to be separated throughout
the backend.
llvm-svn: 207105
ARM64 was not producing pure BFI instructions for bitfield insertion
operations, unlike AArch64. The approach had to be a little different (in
ISelDAGToDAG rather than ISelLowering), and the outcomes aren't identical but
hopefully this gives it similar power.
This should address PR19424.
llvm-svn: 207102
algorithm here: http://dl.acm.org/citation.cfm?id=177301.
The idea of isolating the roots has even more relevance when using the
stack not just to implement the DFS but also to implement the recursive
step. Because we use it for the recursive step, to isolate the roots we
need to maintain two stacks: one for our recursive DFS walk, and another
of the nodes that have been walked. The nice thing is that the latter
will be half the size. It also fixes a complete hack where we scanned
backwards over the stack to find the next potential-root to continue
processing. Now that is always the top of the DFS stack.
While this is a really nice improvement already (IMO) it further opens
the door for two important simplifications:
1) De-duplicating some of the code across the two different walks. I've
actually made the duplication a bit worse in some senses with this
patch because the two are starting to converge.
2) Dramatically simplifying the loop structures of both walks.
I wanted to do those separately as they'll be essentially *just* CFG
restructuring. This patch on the other hand actually uses different
datastructures to implement the algorithm itself.
llvm-svn: 207098
applied prior to pushing a node onto the DFSStack. This is the first
step toward avoiding the stack entirely for leaf nodes. It also
simplifies things a bit and I think is pointing the way toward factoring
some more of the shared logic out of the two implementations.
It is also making it more obvious how to restructure the loops
themselves to be a bit easier to read (although no different in terms of
functionality).
llvm-svn: 207095
Summary:
Correct size_t to be unsigned int and ptrdiff_t to be signed long. The types were the correct size before this change but
the exact type matters for name mangling and exception handling in C++.
Reviewers: atanasyan
Reviewed By: atanasyan
Differential Revision: http://reviews.llvm.org/D3470
llvm-svn: 207093
a SmallPtrSet. Currently, there is no need for stable iteration in this
dimension, and I now thing there won't need to be going forward.
If this is ever re-introduced in any form, it needs to not be
a SetVector based solution because removal cannot be linear. There will
be many SCCs with large numbers of parents. When encountering these, the
incremental SCC update for intra-SCC edge removal was quadratic due to
linear removal (kind of).
I'm really hoping we can avoid having an ordering property here at all
though...
llvm-svn: 207091
This allows us to compile
return (mask & 0x8 ? a : b);
into
testb $8, %dil
cmovnel %edx, %esi
instead of
andl $8, %edi
shrl $3, %edi
cmovnel %edx, %esi
which we formed previously because dag combiner canonicalizes setcc of and into shift.
llvm-svn: 207088
Added support for bytes replication feature, so it could be GAS compatible.
E.g. instructions below:
"vmov.i32 d0, 0xffffffff"
"vmvn.i32 d0, 0xabababab"
"vmov.i32 d0, 0xabababab"
"vmov.i16 d0, 0xabab"
are incorrect, but we could deal with such cases.
For first one we should emit:
"vmov.i8 d0, 0xff"
For second one ("vmvn"):
"vmov.i8 d0, 0x54"
For last two instructions it should emit:
"vmov.i8 d0, 0xab"
P.S.: In ARMAsmParser.cpp I have also fixed few nearby style issues in old code.
Just for keeping method bodies in harmony with themselves.
llvm-svn: 207080
A CursorPlatformAvailability can have several "unavailable" attributes, don't
leak all but the first. I'm not sure if there can be several "deprecate"ds too,
but add the same logic there to keep the two code paths looking the same.
llvm-svn: 207076
The result of getBufferForFile() must be freed.
(Should we change functions that expect the caller to assume ownership so
that they return unique_ptrs instead? Then the type system makes sure we get
this right.)
llvm-svn: 207074
own CRTP base class for more general purpose use. Add some clarifying
comments for the exact way in which the adaptor uses it. Hopefully this
will help us write increasingly full featured iterators. This is
becoming important as they start to be used heavily inside of ranges.
llvm-svn: 207072
Boost's iterator_adaptor, and a specific adaptor which iterates over
pointees when wrapped around an iterator over pointers.
This is the result of a long discussion on IRC with Duncan Smith, Dave
Blaikie, Richard Smith, and myself. Essentially, I could use some subset
of the iterator facade facilities often used from Boost, and everyone
seemed interested in having the functionality in a reasonably generic
form. I've tried to strike a balance between the pragmatism and the
established Boost design. The primary differences are:
1) Delegating to the standard iterator interface names rather than
special names that then make up a second iterator-like API.
2) Using the name 'pointee_iterator' which seems more clear than
'indirect_iterator'. The whole business of calling the '*p' operation
'pointer indirection' in the standard is ... quite confusing. And
'dereference' is no better of a term for moving from a pointer to
a reference.
Hoping Duncan, and others continue to provide comments on this until
we've got a nice, minimal abstraction.
llvm-svn: 207069
together. This is extremely hairy, because in general we need to have loaded
both the template and the pattern before we can determine whether either should
be merged, so we temporarily violate the rule that all merging happens before
reading a decl ends, but *only* in the case where a template's pattern is being
loaded while loading the template itself.
In order to accomodate this for class templates, delay loading the injected
class name type for the pattern of the template until after we've loaded the
template itself, if we happen to load the template first.
llvm-svn: 207063