diagnostics for bad deployment targets and adding a few
more predicates. Includes a patch by Jonathan Schleifer
to enable ARC for ObjFW.
llvm-svn: 162252
target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
option. On the driver, check if we are using libraries from gcc 4.7 or newer
and if so pass -fuse-init-array to the frontend.
The crtbegin*.o files in gcc 4.7 no longer call the constructors listed in
.ctors, so we have to use .init_array.
llvm-svn: 158694
For now -fno-math-errno is the default on BSD-derived platforms (Darwin,
DragonFlyBSD, FreeBSD, NetBSD, OpenBSD). If the default is not right for
your platform, please yell. I only verified the result with the default
compilers on Darwin and FreeBSD.
llvm-svn: 155990
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
world on Solaris 11 for both x86 and x86-64 using the built-in assembler and
Solaris (not GNU) ld, however it currently relies on a hard-coded GCC location
to find crtbegin.o and crtend.o, as well as libgcc and libgcc_eh.
llvm-svn: 150580
driver based on discussions with Doug Gregor. There are several issues:
1) The patch was not reviewed prior to commit and there were review comments.
2) The design of the functionality (triple-prefixed tool invocation)
isn't the design we want for Clang going forward: it focuses on the
"user triple" rather than on the "toolchain triple", and forces that
bit of state into the API of every single toolchain instead of
handling it automatically in the common base classes.
3) The tests provided are not stable. They fail on a few Linux variants
(Gentoo among them) and on mingw32 and some other environments.
I *am* interested in the Clang driver being able to invoke
triple-prefixed tools, but we need to design that feature the right way.
This patch just extends the previous hack without fixing the underlying
problems with it. I'm working on a new design for this that I will mail
for review by tomorrow.
I am aware that this removes functionality that NetBSD relies on, but
this is ToT, not a release. This functionality hasn't been properly
designed, implemented, and tested yet. We can't "regress" until we get
something that really works, both with the immediate use cases and with
long term maintenance of the Clang driver.
For reference, the original commit log:
Keep track of the original target the user specified before
normalization. This used to be captured in DefaultTargetTriple and is
used for the (optional) $triple-$tool lookup for cross-compilation.
Do this properly by making it an attribute of the toolchain and use it
in combination with the computed triple as index for the toolchain
lookup.
llvm-svn: 149337
normalization. This used to be captured in DefaultTargetTriple and is
used for the (optional) $triple-$tool lookup for cross-compilation.
Do this properly by making it an attribute of the toolchain and use it
in combination with the computed triple as index for the toolchain
lookup.
llvm-svn: 149083
gross hack to provide it from my previous patch removing HostInfo. This
was enshrining (and hiding from my searches) the concept of storing and
diff-ing the host and target triples. We don't have the host triple
reliably available, so we need to merely inspect the target system. I've
changed the logic in selecting library search paths for NetBSD to match
what I provided for FreeBSD -- we include both search paths, but put the
32-bit-on-64-bit-host path first so it trumps.
NetBSD maintainers, you may want to tweak this, or feel free to ask me
to tweak it. I've left a FIXME here about the challeng I see in fixing
this properly.
llvm-svn: 148952
a HostInfo reference. Nothing about the HostInfo was used by any
toolchain except digging out the driver from it. This just makes that
a lot more direct. The change was accomplished entirely mechanically.
It's one step closer to removing the shim full of buggy copy/paste code
that is HostInfo.
llvm-svn: 148945
The fundamental shift here is to stop making *any* assumptions about the
*host* triple. Where these assumptions you ask? Why, they were in one of
the two target triples referenced of course. This was the single biggest
place where the previously named "host triple" was actually used as
such. ;] The reason we were reasoning about the host is in order to
detect the use of '-m32' or '-m64' flags to change the target. These
flags shift the default target only slightly, which typically means
a slight deviation from the host. When using these flags, the GCC
installation is under a different triple from the one actually targeted
in the compilation, and we used the host triple to find it.
Too bad that wasn't even correct. Consider an x86 Linux host which has
a PPC64 cross-compiling GCC toolchain installed. This toolchain is also
configured for multiarch compiling and can target PPC32 with eth '-m32'
flag. When targeting 'powerpc-linux-gnu' or some other PPC32 triple, we
have to look for the PPC64 variant of the triple to find the GCC
install, and that triple is neither the host nor target.
The new logic computes the multiarch's alternate triple from the target
triple, and looks under both sides. It also looks more aggressively for
the correct subdirectory of the GCC installation, and exposes the
subdirectory in a nice programmatic way. This '/32' or '/64' suffix is
something we can reuse in many other parts of the toolchain.
An important note -- while this likely fixes a large category of
cross-compile use cases, that's not my primary goal, and I've not done
testing (or added test cases) for scenarios that may now work. If
someone else wants to try more interesting PPC cross compiles, I'd love
to have reports. But my focus is on factoring away the references to the
"host" triple. The refactoring is my goal, and so I'm mostly relying on
the existing (pretty good) test coverage we have here.
Future patches will leverage this new functionality to factor out more
and more of the toolchain's triple manipulation.
llvm-svn: 148935
inside of GCCInstallation to be a proper llvm::Triple. This is still
a touch ugly because we have to use it as a string in so many places,
but I think on the whole the more structured representation is better.
Comments of course welcome if this tradeoff isn't working for folks.
llvm-svn: 148843
especially nice as the Windows toolchain needs the windows header files,
and has lots of platform specific hooks in it.
To facilitate the split, hoist a bunch of file-level static helpers into
class-level static helpers. Spiff up their doxygen comments while there
as they're now more likely to be looked up via docs.
Hopefully, this will be followed by further breaking apart of the
toolchain definitions. Most of the large and complex ones should likely
live on their own. I'm looking at you Darwin. ;]
llvm-svn: 146840
. move compiler-rt to a separate directory so the -L argument only includes compiler-rt (thanks joerg)
. build all clang subdirs
. switches the Minix platform to ELF
. normalizes toolchain invocation
Patch by Ben Gras.
llvm-svn: 146206
version of Ubuntu. It has a very broken multiarch configuration, and so
we need special logic to handle it correctly. Fixing and testing this
uncovered a few other trivial issues with the logic that are fixed as
well.
I added tests to cover this as it is hard to notice if you install
recent versions of the OS.
llvm-svn: 144165
toolchain. The logic is mostly generic already, and where possible
should be made more generic. Also, it has no impact other than to expose
a set of methods which each toolchain can then query to setup their
desired configuration. These should be available to toolchains beyond
just Linux.
llvm-svn: 143899
the detected GCC installation. This allows us to expose another aspect
of what we detected: the GCC version. This will be used shortly.
llvm-svn: 143871
variable to begin with... As I'm planning to add include root
information to this object, this would have caused confusion. It didn't
even *actually* hold the include root by the time we were done with it.
llvm-svn: 143840
toolchain instead of merely using it in the constructor. This will allow
us to query it when building include paths as well as the file search
paths built in the constructor. I've lifted as little of it as I could
into the header file.
Eventually this will likely sink down into some of the Generic
toolchains and be used on more platforms, but I'm starting on Linux so
I can work out all the APIs needed there, where it is easiest to test
and we have the most pressing need.
llvm-svn: 143838
the first (and diff-noisiest) step to making Linux header searching
tremendously more principled and less brittle. Note that this step
should have essentially no functional impact. We still search the exact
same set of paths in the exact same order. The only change here is where
the code implementing such a search lives.
This has one obvious negative impact -- we now pass a ludicrous number
of flags to the CC1 layer. That should go away as I re-base this logic
on the logic to detect a GCC installation. I want to do this in two
phases so the bots can tell me if this step alone breaks something, and
so that the diffs of the refactoring make more sense.
llvm-svn: 143822
Windows. There are still FIXMEs and lots of problems with this code.
Some of them will be addressed shortly by my follow-up patches, but most
are going to wait until we isolate this code and can fix it properly.
This version should be no worse than what we had before.
llvm-svn: 143752
Check whether the libc++ library is available when using -stdlib=libc++,
and also adjust the check for whether to link with -lgcc_s.1.
Patch by Ted Kremenek and Daniel Dunbar.
llvm-svn: 141374
This replaces the hack to read UNAME_RELEASE from the environment when
identifying the OS version on Darwin, and it's more flexible. It's also
horribly ugly, but at least this consolidates the ugliness to touch less of
the code so that it will be easier to rip out later.
llvm-svn: 140187
feature akin to the ARC runtime checks. Removes a terrible hack where
IR gen needed to find the declarations of those symbols in the translation
unit.
llvm-svn: 139404