The isConstOrConstSplat result is only used in a ISD::matchUnaryPredicate call which can perform the equivalent iteration just as quickly.
llvm-svn: 339262
This patch aims to improve the codegen for vector loads involving the
scalar_to_vector (load X) sequence. Initially, ld->mv instructions were used
for scalar_to_vector (load X), so this patch allows scalar_to_vector (load X)
to utilize:
LXSD and LXSDX for i64 and f64
LXSIWAX for i32 (sign extension to i64)
LXSIWZX for i32 and f64
Committing on behalf of Amy Kwan.
Differential Revision: https://reviews.llvm.org/D48950
llvm-svn: 339260
Summary:
Currently, in line with GCC, when specifying reserved registers like sp or pc on an inline asm() clobber list, we don't always preserve the original value across the statement. And in general, overwriting reserved registers can have surprising results.
For example:
```
extern int bar(int[]);
int foo(int i) {
int a[i]; // VLA
asm volatile(
"mov r7, #1"
:
:
: "r7"
);
return 1 + bar(a);
}
```
Compiled for thumb, this gives:
```
$ clang --target=arm-arm-none-eabi -march=armv7a -c test.c -o - -S -O1 -mthumb
...
foo:
.fnstart
@ %bb.0: @ %entry
.save {r4, r5, r6, r7, lr}
push {r4, r5, r6, r7, lr}
.setfp r7, sp, #12
add r7, sp, #12
.pad #4
sub sp, #4
movs r1, #7
add.w r0, r1, r0, lsl #2
bic r0, r0, #7
sub.w r0, sp, r0
mov sp, r0
@APP
mov.w r7, #1
@NO_APP
bl bar
adds r0, #1
sub.w r4, r7, #12
mov sp, r4
pop {r4, r5, r6, r7, pc}
...
```
r7 is used as the frame pointer for thumb targets, and this function needs to restore the SP from the FP because of the variable-length stack allocation a. r7 is clobbered by the inline assembly (and r7 is included in the clobber list), but LLVM does not preserve the value of the frame pointer across the assembly block.
This type of behavior is similar to GCC's and has been discussed on the bugtracker: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=11807 . No consensus seemed to have been reached on the way forward. Clang behavior has briefly been discussed on the CFE mailing (starting here: http://lists.llvm.org/pipermail/cfe-dev/2018-July/058392.html). I've opted for following Eli Friedman's advice to print warnings when there are reserved registers on the clobber list so as not to diverge from GCC behavior for now.
The patch uses MachineRegisterInfo's target-specific knowledge of reserved registers, just before we convert the inline asm string in the AsmPrinter.
If we find a reserved register, we print a warning:
```
repro.c:6:7: warning: inline asm clobber list contains reserved registers: R7 [-Winline-asm]
"mov r7, #1"
^
```
Reviewers: eli.friedman, olista01, javed.absar, efriedma
Reviewed By: efriedma
Subscribers: efriedma, eraman, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49727
llvm-svn: 339257
Provide a pass-through of the numerator for divide by one cases - this is the same approach we take in DAGCombiner::visitSDIVLike.
I investigated whether we could achieve this by magic MULHU/SRL values but nothing appeared to work as we don't have a way for MULHU(x,c) -> x
llvm-svn: 339254
Match the GNU assembler in supporting immediate operands for these
instructions even when the reg-reg mnemonic is used.
Differential Revision: https://reviews.llvm.org/D50046
Patch by Kito Cheng.
llvm-svn: 339252
This accounts for the missing IR fold noted in D50195. We don't need any fast-math to enable the negation transform.
FP negation can always be folded into an fmul/fdiv constant to eliminate the fneg.
I've limited this to one-use to ensure that we are eliminating an instruction rather than replacing fneg by a
potentially expensive fdiv or fmul.
Differential Revision: https://reviews.llvm.org/D50417
llvm-svn: 339248
As requested in D50392, this is a minor refactor to BuildExactSDIV to stop taking the uniform constant APInt divisor and instead extract it locally.
I also cleanup the operands and valuetypes to better match BuildUDiv (and BuildSDIV in the near future).
llvm-svn: 339246
Summary:
https://rise4fun.com/Alive/IT3
Comes up in the [most ugliest] `signed int` -> `signed char` case of
`-fsanitize=implicit-conversion` (https://reviews.llvm.org/D50250)
Previously, we were stuck with `not`: {F6867736}
But now we are able to completely get rid of it: {F6867737}
(FIXME: why are we loosing the metadata? that seems wrong/strange.)
Here, we only want to do that it we will be able to completely
get rid of that 'not'.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: vsk, erichkeane, llvm-commits
Differential Revision: https://reviews.llvm.org/D50301
llvm-svn: 339243
Summary: Extend fix for PR34170 to support inline assembly with multiple output operands that do not naturally go in the register class it is constrained to (eg. double in a 32-bit GPR as in the PR).
Reviewers: bogner, t.p.northover, lattner, javed.absar, efriedma
Reviewed By: efriedma
Subscribers: efriedma, tra, eraman, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D45437
llvm-svn: 339225
Function template names are not stored in the backref table,
but non-template function names are. The general pattern seems
to be that when you are demangling a symbol name, if the name
starts with '?' it does not go into the backreference table,
otherwise it does. Note that this even handles the general case
of operator names (template or otherwise) not going into the
back-reference table, anonymous namespaces not going into the
backreference table, etc.
It's important that we apply this check *only* for the
unqualified portion of a name, and only for symbol names.
For example, this does not apply to type names (such as class
templates) and we need to make sure that these still do go
into the backref table.
Differential Revision: https://reviews.llvm.org/D50394
llvm-svn: 339211
Frontends emit 'unused' coverage mapping records for functions which are
provably unused in a TU. These unused records contain a single counter
with CounterKind::Zero. However, a function may be unused in one TU and
used in another. When this happens, prefer the records with a full set
of counters instead of arbitrarily picking the first loaded record.
There is no impact on the single-TU case. In the multiple-TU case, this
resolves issues causing a function to appear unused when it's not.
Testing: check-{llvm,clang,compiler-rt}
rdar://42981322
llvm-svn: 339194
https://reviews.llvm.org/D50283
reviewed by bogner
This patch refactors FileCheck's implementation into support so it can
be used from C++ in other places (Unit tests).
llvm-svn: 339192
Fixup test to check for GCN prefix
These patterns always zero extend the result even though it might need sign extension.
This has been broken since the addition of i16 support.
It has popped up in mad_sat(char) test since min(max()) combination is turned into v_med3, resulting in the following (incorrect) sequence:
v_mad_i16 v2, v10, v9, v11
v_med3_i32 v2, v2, v8, v7
Fixes mad_sat(char) piglit on VI.
Differential Revision: https://reviews.llvm.org/D49836
llvm-svn: 339190
Add missing SIMD types (v2f64) and binary ops. Also adds
tablegen support for automatically prepending prefix byte to SIMD
opcodes.
Differential Revision: https://reviews.llvm.org/D50292
Patch by Thomas Lively
llvm-svn: 339186
Vgather requires must be in a packet with a store, which contradicts
the no-packets feature. As a consequence, gather/scatter could not be
used with no-packets. Relax this, and allow gather packets as exceptions
to the no-packets requirements.
llvm-svn: 339177
Summary:
This patch extends CFGSort pass to support exception handling. Once it
places a loop header, it does not place blocks that are not dominated by
the loop header until all the loop blocks are sorted. This patch extends
the same algorithm to exception 'catch' part, using the information
calculated by WebAssemblyExceptionInfo class.
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, llvm-commits
Differential Revision: https://reviews.llvm.org/D46500
llvm-svn: 339172
Summary:
Reworked the previously committed patch to insert shuffles for reused
extract element instructions in the correct position. Previous logic was
incorrect, and might lead to the crash with PHIs and EH instructions.
Reviewers: efriedma, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50143
llvm-svn: 339166
getOrCompHotCountThreshold/getOrCompColdCountThreshold introduced in
https://reviews.llvm.org/D45377 contain a bad mistake and will only return 1 or 0
instead of the true hot/cold cutoff value. The patch fixes the mistake. But the
mistake seems not causing big performance difference according to internal server
benchmarks testing.
Differential Revision: https://reviews.llvm.org/D50370
llvm-svn: 339162
Scatter could have multiple identical indices. We need to maintain sequential order. We get this right in LegalizeVectorTypes, but not in this code.
Differential Revision: https://reviews.llvm.org/D50374
llvm-svn: 339157
In combineMetadata, we should be able to preserve K's nonnull metadata,
if K does not move. This condition should hold for all replacements by
NewGVN/GVN, but I added a bunch of assertions to verify that.
Fixes PR35038.
There probably are additional kinds of metadata that could be preserved
using similar reasoning. This is follow-up work.
Reviewers: dberlin, davide, efriedma, nlopes
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47339
llvm-svn: 339149
This was missed in D50185.
NFC until we add actual non-uniform support to BuildSDIV (similar BuildUDIV support in D49248) - for now it just early outs.
llvm-svn: 339147
Remove the redundant check against zero when updating ProcResourceCounters in
nextGroup(), as pointed out in https://reviews.llvm.org/D50187.
Review: Ulrich Weigand.
llvm-svn: 339139
This function is shared between both implementations. I am not sure if
Utils/Local.h is the best place though.
Reviewers: davide, dberlin, efriedma, xbolva00
Reviewed By: efriedma, xbolva00
Differential Revision: https://reviews.llvm.org/D47337
llvm-svn: 339138
This fixes an inconsistency in code generation when compiling with or
without debug information (-g). When debug information is available in
an empty block, the original test would fail, resulting in possibly
different code.
Patch by: Jeroen Dobbelaere
Differential revision: https://reviews.llvm.org/D49467
llvm-svn: 339129
When potential jump instruction and target are in the same segment, use
jump instruction with immediate field.
In cases where offset does not fit immediate value of a bc/j instructions,
offset is stored into register, and then jump register instruction is used.
Differential Revision: https://reviews.llvm.org/D48019
llvm-svn: 339126
Summary:
The accelerator tables use the debug_str section to store their strings.
However, they do not support the indirect method of access that is
available for the debug_info section (DW_FORM_strx et al.).
Currently our code is assuming that all strings can/will be referenced
indirectly, and puts all of them into the debug_str_offsets section.
This is generally true for regular (unsplit) dwarf, but in the DWO case,
most of the strings in the debug_str section will only be used from the
accelerator tables. Therefore the contents of the debug_str_offsets
section will be largely unused and bloating the main executable.
This patch rectifies this by teaching the DwarfStringPool to
differentiate between strings accessed directly and indirectly. When a
user inserts a string into the pool it has to declare whether that
string will be referenced directly or not. If at least one user requsts
indirect access, that string will be assigned an index ID and put into
debug_str_offsets table. Otherwise, the offset table is skipped.
This approach reduces the overall binary size (when compiled with
-gdwarf-5 -gsplit-dwarf) in my tests by about 2% (debug_str_offsets is
shrunk by 99%).
Reviewers: probinson, dblaikie, JDevlieghere
Subscribers: aprantl, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D49493
llvm-svn: 339122
This patch refactors the existing TargetLowering::BuildUDIV base implementation to support non-uniform constant vector denominators.
It also includes a fold for MULHU by pow2 constants to SRL which can now more readily occur from BuildUDIV.
Differential Revision: https://reviews.llvm.org/D49248
llvm-svn: 339121
I was trying to add a test case for LLD and found that it
is impossible to set sh_entsize via yaml.
The patch implements the missing part.
Differential revision: https://reviews.llvm.org/D50235
llvm-svn: 339113
This is necessary to add a VI specific builtin,
__builtin_amdgcn_s_dcache_wb. We already have an
overly specific feature for one of these builtins,
for s_memrealtime. I'm not sure whether it's better
to add more of those, or to get rid of that and merge
it with vi-insts.
Alternatively, maybe this logically goes with scalar-stores?
llvm-svn: 339104
Src0 doesn't really convey any meaning to what the operand is. Passthru matches what's used in the documentation for the intrinsic this comes from.
llvm-svn: 339101
Summary:
This change uses a single offset pointer used throughout the
implementation of the individual record parsers. This allows us to
report where in a trace file parsing failed.
We're still in an intermediate step here as we prepare to refactor this
further into a set of types and use object-oriented design principles
for a cleaner implementation. The next steps will be to allow us to
parse/dump files in a streaming fashion and incrementally build up the
structures in memory instead of the current all-or-nothing approach.
Reviewers: kpw, eizan
Reviewed By: kpw
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50169
llvm-svn: 339092
Logic for tracking implicit control flow instructions was added to GVN to
perform PRE optimizations correctly. It appears that GVN is not the only
optimization that sometimes does PRE, so this logic is required in other
places (such as Jump Threading).
This is an NFC patch that encapsulates all ICF-related logic in a dedicated
utility class separated from GVN.
Differential Revision: https://reviews.llvm.org/D40293
llvm-svn: 339086
Summary:
Wasm does not have direct counterparts to some of LLVM IR's atomicrmw
instructions (min, max, umin, umax, and nand). This enables atomic
expansion using cmpxchg instruction within a loop for those atomicrmw
instructions.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D49440
llvm-svn: 339084
Summary:
The spec only defines a SIMD expression type of V128 and
leaves interpretation of different vector types to the instructions.
Differential Revision: https://reviews.llvm.org/D50367
Patch by Thomas Lively
llvm-svn: 339082
This matches our behaviour for regular (i.e. relocated) references to
private symbols and therefore avoids needing to unnecessarily write
address-significant .L symbols to the object file's symbol table,
which can interfere with stack traces.
Fixes check-cfi after r339050.
llvm-svn: 339066
Everything should quiet, and I think everything should
flush.
I assume the min3/med3/max3 follow the same rules
as regular min/max for flushing, which should at
least be conservatively correct.
There are still more operations that need to
be handled.
llvm-svn: 339065
Not sure why this was checking for denormals for f16.
My interpretation of the IEEE standard is conversions
should produce a canonical result, and the ISA manual
says denormals are created when appropriate.
llvm-svn: 339064
If denormals are enabled, denormals are canonical.
Also fix a few other issues. minnum/maxnum are supposed
to canonicalize. Temporarily improve workaround for the
instruction behavior change in gfx9.
Handle selects and fcopysign.
The tests were also largely broken, since they were
checking for a flush used on some targets after the
store of the result.
llvm-svn: 339061
This assert fires when attempting to extract a subregister from the
global PIC base register. This virtual register SD node is not in the
VRBaseMap, so we shouldn't call getVR to look it up there. If this is a
RegisterSDNode, we should be able to use the virtual register directly.
Fixes PR38385
llvm-svn: 339056
Properly shrink `pow()` to `powf()` as a binary function and, when no other
simplification applies, do not discard it.
Differential revision: https://reviews.llvm.org/D50113
llvm-svn: 339046
Summary:
Expand isFNEG so that we generate the appropriate F(N)M(ADD|SUB)
instructions in more cases. For example, the following sequence
a = _mm256_broadcast_ss(f)
d = _mm256_fnmadd_ps(a, b, c)
generates an fsub and fma without this patch and an fnma with this
change.
Reviewers: craig.topper
Subscribers: llvm-commits, davidxl, wmi
Differential Revision: https://reviews.llvm.org/D48467
llvm-svn: 339043
If the store is volatile this might be a memory mapped IO access. In that case we shouldn't generate a load that didn't exist in the source
Differential Revision: https://reviews.llvm.org/D50270
llvm-svn: 339041
for all the uses from the same def is done.
We run into a compile time problem with flex generated code combined with
`-fno-jump-tables`. The cause is that machineLICM hoists a lot of invariants
outside of a big loop, and drastically increases the compile time in global
register splitting and copy coalescing. https://reviews.llvm.org/D49353
relieves the problem in global splitting. This patch is to handle the problem
in copy coalescing.
About the situation where the problem in copy coalescing happens. After
machineLICM, we have several defs outside of a big loop with hundreds or
thousands of uses inside the loop. Rematerialization in copy coalescing
happens for each use and everytime rematerialization is done, shrinkToUses
will be called to update the huge live interval. Because we have 'n' uses
for a def, and each live interval update will have at least 'n' complexity,
the total update work is n^2.
To fix the problem, we try to do the live interval update work in a collective
way. If a def has many copylike uses larger than a threshold, each time
rematerialization is done for one of those uses, we won't do the live interval
update in time but delay that work until rematerialization for all those uses
are completed, so we only have to do the live interval update work once.
Delaying the live interval update could potentially change the copy coalescing
result, so we hope to limit that change to those defs with many
(like above a hundred) copylike uses, and the cutoff can be adjusted by the
option -mllvm -late-remat-update-threshold=xxx.
Differential Revision: https://reviews.llvm.org/D49519
llvm-svn: 339035
On windows when raw_fd_ostream::write_impl calls write, a 32 bit input is required for character count. As a variable with size_t is used for this argument, on x64 integral demotion occurs. In the case of large files an infinite loop follows.
See: https://bugs.llvm.org/show_bug.cgi?id=37926
This fix allows the output of files larger than the previous int32 limit.
Differential Revision: https://reviews.llvm.org/D48948
llvm-svn: 339027
Summary:
Ensure that NormalizedBuildVector returns a BUILD_VECTOR with operands of the
same type. This fixes an assertion failure in VerifySDNode.
Reviewers: SjoerdMeijer, t.p.northover, javed.absar
Reviewed By: SjoerdMeijer
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D50202
llvm-svn: 339013
Currently we use #pragma push_macro(LLVM_DEBUG) to fiddle with the LLVM_DEBUG
macro so that we can silence debugging the Knuth division algorithm unless it's
actually desired. Unfortunately this is incompatible with enabling modules
while building LLVM (via LLVM_ENABLE_MODULES=ON), probably due to a bug being
fixed by D33004.
llvm-svn: 339009
ld64 supplies its own Thumb bit for Thumb functions, and intentionally zeroes
out that part of any addend in an object file. But it only does that for
symbols marked N_EXT -- i.e. external symbols. So LLVM should avoid setting
that extra bit in other cases.
llvm-svn: 339007
The patch was reverted because of bug detected by sanitizer. The bug is fixed,
respective tests added.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 339005
Multiple failues reported by sanitizer-x86_64-linux, seem to be caused by this
patch. Reverting to see if they sustain without it.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 338994
`isKnownNonNullFromDominatingCondition` is able to prove non-null basing on `br` or `guard`
by `%p != null` condition, but is unable to do so basing on `(%p != null) && %other_cond`.
This patch allows it to do so.
Differential Revision: https://reviews.llvm.org/D50172
Reviewed By: reames
llvm-svn: 338990
If there is a frequently taken branch dominated by a guard, and its condition is available
at the point of the guard, we can widen guard with condition of this branch and convert
the branch into unconditional:
guard(cond1)
if (cond2) {
// taken in 99.9% cases
// do something
} else {
// do something else
}
Converts to
guard(cond1 && cond2)
// do something
Differential Revision: https://reviews.llvm.org/D49974
Reviewed By: reames
llvm-svn: 338988
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
This code was moved out from BasicObjectLayerMaterializationUnit, which required
the supplied object to be well formed. The getObjectSymbolFlags function does
not require a well-formed object, so we have to propagate the error here.
llvm-svn: 338975
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338969
There are a bunch of edge cases and inconsistencies in how we're emitting sections
cause this warning to fire and it needs more work.
This reverts commit r335558.
llvm-svn: 338968
Summary:
Previously, in the NewPM pipeline, TailCallElim recalculates the DomTree when it modifies any instruction in the Function.
For example,
```
CallInst *CI = dyn_cast<CallInst>(&I);
...
CI->setTailCall();
Modified = true;
...
if (!Modified || ...)
return PreservedAnalyses::all();
```
After applying this patch, the DomTree only recalculates if needed (plus an extra insertEdge() + an extra deleteEdge() call).
When optimizing SQLite with `-passes="default<O3>"` pipeline of the newPM, the number of DomTree recalculation decreases by 6.2%, the number of nodes visited by DFS decreases by 2.9%. The time used by DomTree will decrease approximately 1%~2.5% after applying the patch.
Statistics:
```
Before the patch:
23010 dom-tree-stats - Number of DomTree recalculations
489264 dom-tree-stats - Number of nodes visited by DFS -- DomTree
After the patch:
21581 dom-tree-stats - Number of DomTree recalculations
475088 dom-tree-stats - Number of nodes visited by DFS -- DomTree
```
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49982
llvm-svn: 338954
This change allows users pass compression level that was not listed
in the enum. Also, I think using different values than zlib's
compression levels was just confusing.
Differential Revision: https://reviews.llvm.org/D50196
llvm-svn: 338939
At one point in time acquire implied mayLoad and mayStore as did release. Thus we needed separate pseudos that also carried that property. This appears to no longer be the case. I believe it was changed in 2012 with a comment saying that atomic memory accesses are marked volatile which preserves the ordering.
So from what I can tell we shouldn't need additional pseudos since they aren't carry any flags that are different from the normal instructions. The only thing I can think of is that we may consider them for load folding candidates in the peephole pass now where we didn't before. If that's important hopefully there's something in the memory operand we can check to prevent the folding without relying on pseudo instructions.
Differential Revision: https://reviews.llvm.org/D50212
llvm-svn: 338925
resize() (zeroing) makes every allocated page resident. The actual size of the compressed buffer is usually much
smaller. Making every page resident is wasteful.
When linking a test binary with ~1.9GiB uncompressed debug info with LLD, this optimization decreases max RSS by ~1.5GiB.
Differential Revision: https://reviews.llvm.org/50223
llvm-svn: 338913
Add a parameter for testing specifically for
sNaNs - at least one instruction pattern on AMDGPU
needs to check specifically for this.
Also handle more cases, and add a target hook
for custom nodes, similar to the hooks for known
bits.
llvm-svn: 338910
Clang uses "ctpop & 1" to implement __builtin_parity. If the popcnt instruction isn't supported this generates a large amount of code to calculate the population count. Instead we can bisect the data down to a single byte using xor and then check the parity flag.
Even when popcnt is supported, its still a good idea to split 64-bit data on 32-bit targets using an xor in front of a single popcnt. Otherwise we get two popcnts and an add before the and.
I've specifically targeted this at the sizes supported by clang builtins, but we could generalize this if we think that's useful.
Differential Revision: https://reviews.llvm.org/D50165
llvm-svn: 338907
Merge the helper functions for shrinking unary and binary functions into a
single one, while keeping all their functionality. Otherwise, NFC.
llvm-svn: 338905
In r337830 I added SCEV checks to enable us to insert fewer bounds checks. Unfortunately, this sometimes crashes when multiple bounds checks are added due to SCEV caching issues. This patch splits the bounds checking pass into two phases, one that computes all the conditions (using SCEV checks) and the other that adds the new instructions.
Differential Revision: https://reviews.llvm.org/D49946
llvm-svn: 338902
Summary:
Previously, `removeUnreachableBlocks` still returns true (which indicates the CFG is changed) even when all the unreachable blocks found is awaiting deletion in the DDT class.
This makes code pattern like
```
// Code modified from lib/Transforms/Scalar/SimplifyCFGPass.cpp
bool EverChanged = removeUnreachableBlocks(F, nullptr, DDT);
...
do {
EverChanged = someMightHappenModifications();
EverChanged |= removeUnreachableBlocks(F, nullptr, DDT);
} while (EverChanged);
```
become a dead loop.
Fix this by detecting whether a BasicBlock is already awaiting deletion.
Reviewers: kuhar, brzycki, dmgreen, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49738
llvm-svn: 338882
We don't expect module names to be present in the index. This patch adds
DW_TAG_module to the blacklist.
Differential revision: https://reviews.llvm.org/D50237
llvm-svn: 338878
Some instructions expand to more than one decoder group.
This has been hitherto ignored, but is handled with this patch.
Review: Ulrich Weigand
https://reviews.llvm.org/D50187
llvm-svn: 338849
In r338216 / D49860 TempFile::keep was extended to allow keeping across
filesystems. The aim on Windows was to have this happen in rename_internal
using the existing system API. However, to fix an issue and preserve the
idea of "renaming" not being a move, put Windows keep-across-filesystem in
TempFile::keep.
Differential Revision: https://reviews.llvm.org/D50048
llvm-svn: 338841
First step towards a BuildSDIV equivalent to D49248 for non-uniform vector support - this just pushes the splat detection down into TargetLowering::BuildSDIV where its still used.
Differential Revision: https://reviews.llvm.org/D50185
llvm-svn: 338838
Summary:
This change implements the profile loading functionality in LLVM to
support XRay's profiling mode in compiler-rt.
We introduce a type named `llvm::xray::Profile` which allows building a
profile representation. We can load an XRay profile from a file to build
Profile instances, or do it manually through the Profile type's API.
The intent is to get the `llvm-xray` tool to generate `Profile`
instances and use that as the common abstraction through which all
conversion and analysis can be done. In the future we can generate
`Profile` instances from `Trace` instances as well, through conversion
functions.
Some of the key operations supported by the `Profile` API are:
- Path interning (`Profile::internPath(...)`) which returns a unique path
identifier.
- Block appending (`Profile::addBlock(...)`) to add thread-associated
profile information.
- Path ID to Path lookup (`Profile::expandPath(...)`) to look up a
PathID and return the original interned path.
- Block iteration.
A 'Path' in this context represents the function call stack in
leaf-to-root order. This is represented as a path in an internally
managed prefix tree in the `Profile` instance. Having a handle (PathID)
to identify the unique Paths we encounter for a particular Profile
allows us to reduce the amount of memory required to associate profile
data to a particular Path.
This is the first of a series of patches to migrate the `llvm-stacks`
tool towards using a single profile representation.
Depends on D48653.
Reviewers: kpw, eizan
Reviewed By: kpw
Subscribers: mgorny, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D48370
llvm-svn: 338825
There are a lot of permutations of types here generating a lot of patterns in the isel table. It's more efficient to just ReplaceUses and RemoveDeadNode from the Select function.
The test changes are because we have a some shuffle patterns that have a bitcast as their root node. But the behavior is identical to another instruction whose pattern doesn't start with a bitcast. So this isn't a functional change.
llvm-svn: 338824
Summary:
This patch refines the logic of `recalculate()` in the `DomTreeUpdater` in the following two aspects:
1. Previously, `recalculate()` tests whether there are pending updates/BBs awaiting deletion and then do recalculation under Lazy UpdateStrategy; and do recalculation immediately under Eager UpdateStrategy. (The former behavior is inherited from the `DeferredDominance` class). This is an inconsistency between two strategies and there is no obvious reason to do this. So the behavior is changed to always recalculate available trees when calling `recalculate()`.
2. Fix the issue of when DTU under Lazy UpdateStrategy holds nothing but with BBs awaiting deletion, after calling `recalculate()`, BBs awaiting deletion aren't flushed. An additional unittest is added to cover this case.
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50173
llvm-svn: 338822
Move all the patterns to X86InstrVecCompiler.td so we can keep SSE/AVX/AVX512 all in one place.
To save some patterns we'll use an existing DAG combine to convert f128 fand/for/fxor to integer when sse2 is enabled. This allows use to reuse all the existing patterns for v2i64.
I believe this now makes SHA instructions the only case where VEX/EVEX and legacy encoded instructions could be generated simultaneously.
llvm-svn: 338821
This is the second patch of the series which intends to enable jump threading for an inlined method whose return type is std::pair<int, bool> or std::pair<bool, int>.
The first patch is https://reviews.llvm.org/rL338485.
This patch handles code sequences that merges two values using `shl` and `or`, then extracts one value using `and`.
Differential Revision: https://reviews.llvm.org/D49981
llvm-svn: 338817
Summary:
This patch is the second in a series of patches related to the [[ http://lists.llvm.org/pipermail/llvm-dev/2018-June/123883.html | RFC - A new dominator tree updater for LLVM ]].
It converts passes (e.g. adce/jump-threading) and various functions which currently accept DDT in local.cpp and BasicBlockUtils.cpp to use the new DomTreeUpdater class.
These converted functions in utils can accept DomTreeUpdater with either UpdateStrategy and can deal with both DT and PDT held by the DomTreeUpdater.
Reviewers: brzycki, kuhar, dmgreen, grosser, davide
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48967
llvm-svn: 338814
If the producing instruction is legacy encoded it doesn't implicitly zero the upper bits. This is important for the SHA instructions which don't have a VEX encoded version. We might also be able to hit this with the incomplete f128 support that hasn't been ported to VEX.
llvm-svn: 338812
I'm assuming the R13 restriction extends to R13D. Guessing this restriction is related to the funny encoding of this register as base always requiring a displacement to be encoded.
llvm-svn: 338806
This one requires a bit of explaination. It's not every day you simply delete code to implement an optimization. :)
The transform in question is sinking an instruction from a loop to the uses in loop exiting blocks. We know (from LCSSA) that all of the uses outside the loop must be phi nodes, and after predecessor splitting, we know all phi users must have a single operand. Since the use must be strictly dominated by the def, we know from the definition of dominance/ssa that the exit block must execute along a (non-strict) subset of paths which reach the def. As a result, duplicating a potentially faulting instruction can not *introduce* a fault that didn't previously exist in the program.
The full story is that this patch builds on "rL338671: [LICM] Factor out fault legality from canHoistOrSinkInst [NFC]" which pulled this logic out of a common helper routine. As best I can tell, this check was originally added to the helper function for hoisting legality, later an incorrect fastpath for loads/calls was added, and then the bug was fixed by duplicating the fault safety check in the hoist path. This left the redundant check in the common code to pessimize sinking for no reason. I split it out in an NFC, and am not removing the unneccessary check. I wanted there to be something easy to revert in case I missed something.
Reviewed by: Anna Thomas (in person)
llvm-svn: 338794
At least on ELF, it's impossible to tell from the object file whether
two globals with the same section marking were merged: the merged global
uses "private" linkage to hide its symbol, and the aliases look like
regular symbols. I can't think of any other reason to disallow it.
(Of course, we can only merge globals in the same section.)
The weird alignment handling matches AsmPrinter; our alignment handling
for global variables should probably be refactored.
Differential Revision: https://reviews.llvm.org/D49822
llvm-svn: 338791
Summary:
By not reconstructing the operand list of the SDNode, this change makes
it easier to add the forthcoming new tbuffer and buffer intrinsics.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D49995
Change-Id: I0cb79ef0801532645d7dd954a6d7355139db7b38
llvm-svn: 338784
Summary:
I encountered some problems with SIFixWWMLiveness when WWM is in a loop:
1. It sometimes gave invalid MIR where there is some control flow path
to the new implicit use of a register on EXIT_WWM that does not pass
through any def.
2. There were lots of false positives of registers that needed to have
an implicit use added to EXIT_WWM.
3. Adding an implicit use to EXIT_WWM (and adding an implicit def just
before the WWM code, which I tried in order to fix (1)) caused lots
of the values to be spilled and reloaded unnecessarily.
This commit is a rework of SIFixWWMLiveness, with the following changes:
1. Instead of considering any register with a def that can reach the WWM
code and a def that can be reached from the WWM code, it now
considers three specific cases that need to be handled.
2. A register that needs liveness over WWM to be synthesized now has it
done by adding itself as an implicit use to defs other than the
dominant one.
Also added the following fixmes:
FIXME: We should detect whether a register in one of the above
categories is already live at the WWM code before deciding to add the
implicit uses to synthesize its liveness.
FIXME: I believe this whole scheme may be flawed due to the possibility
of the register allocator doing live interval splitting.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D46756
Change-Id: Ie7fba0ede0378849181df3f1a9a7a39ed1a94a94
llvm-svn: 338783
Summary:
This fixes a problem where a load from global+idx generated incorrect
code on <=gfx7 when the index is divergent.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47383
Change-Id: Ib4d177d6254b1dd3f8ec0203fdddec94bd8bc5ed
llvm-svn: 338779
This will remove suboptimal branching from the generated ll/sc loops.
The extra simplification pass affects a lot of testcases, which have
been modified to accommodate this change: either by modifying the
test to become immune to the CFG simplification, or (less preferablt)
by adding option -hexagon-initial-cfg-clenaup=0.
llvm-svn: 338774
An instance of ReexportsFallbackDefinitionGenerator can be attached to a VSO
(via setFallbackDefinitionGenerator) to re-export symbols on demandy from a
backing VSO.
llvm-svn: 338764
r337748 made us start incrementing DebugCounters all of the time. This
makes tsan unhappy in multithreaded environments.
Since it doesn't make much sense to use DebugCounters with multiple
threads, this patch makes us only count anything if the user passed a
-debug-counter option or if some other piece of code explicitly asks
for it (e.g. the pass in D50031).
The amount of global state here makes writing a unittest for this
behavior somewhat awkward. So, no test is provided.
Differential Revision: https://reviews.llvm.org/D50150
llvm-svn: 338762
Summary:
On Windows, TempFile::create() was prone to failing with permission
denied errors when a process created many tempfiles without providing
a model large enough to accommodate them. There was also a problem
with createUniqueEntity getting into an infinite loop when all names
permitted by the model are in use. This change fixes both of these
problems and adds a unit test for them.
Reviewers: pcc, rnk, zturner
Reviewed By: zturner
Subscribers: inglorion, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50126
llvm-svn: 338745
Rather than allowing invalid bitcasts to be lowered to wasm
call instructions that won't validate, generate wrappers that
contain unreachable thereby delaying the error until runtime.
Differential Revision: https://reviews.llvm.org/D49517
llvm-svn: 338744
We need to both record and resolve back-references lazily due to
not being able to know until a demangling is complete whether or
not a name should go into the back-reference table.. This patch
implements lazy resolution of back-references, but we still have
eager recording of back-references. This will be fixed in a
subsequent patch.
llvm-svn: 338736
These instructions perform the same operation, but the semantic of which operand is destroyed is reversed. If the same register is used as both operands we can change the execution domain without worrying about this difference.
Unfortunately, this really only works in cases where the input register is killed by the instruction. If its not killed, the two address isntruction pass inserts a copy that will become a move instruction. This makes the instruction use different physical registers that contain the same data at the time the unpck/movhlps executes. I've considered using a unary pseudo instruction with tied operand to trick the two address instruction pass. We could then expand the pseudo post regalloc to get the same physical register on both inputs.
Differential Revision: https://reviews.llvm.org/D50157
llvm-svn: 338735
This adds the NAN checks suggested in PR37776:
https://bugs.llvm.org/show_bug.cgi?id=37776
If both operands to maxnum are NAN, that should get constant folded, so we don't
have to handle that case. This is the same assumption as other FP ops in this
function. Returning 'false' is always conservatively correct.
Copying from the bug report:
Currently, we have this for "when is cannotBeOrderedLessThanZero
(mustBePositiveOrNaN) true for maxnum":
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | x |
------------------------
|NaN | x | x | x |
------------------------
The cases with (Neg & NaN) are wrong. We should have:
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | |
------------------------
|NaN | x | | x |
------------------------
Differential Revision: https://reviews.llvm.org/D50081
llvm-svn: 338716
Adds some cleaned up debug messages from back when I was writing this.
Hopefully useful to others (and myself) as to why unroll and jam is not
transforming as expected.
Differential Revision: https://reviews.llvm.org/D50062
llvm-svn: 338676
As a part of adding the tiny codemodel, we need to support ldr's with :got:
relocations on them. This seems to be mostly already done, just needs the
relocation type support.
Differential Revision: https://reviews.llvm.org/D50137
llvm-svn: 338673
This method has three callers, each of which wanted distinct handling:
1) Sinking into a loop is moving an instruction known to execute before a loop into the loop. We don't need to worry about introducing a fault at all in this case.
2) Hoisting from a loop into a preheader already duplicated the check in the caller.
3) Sinking from the loop into an exit block was the only true user of the code within the routine. For the moment, this has just been lifted into the caller, but up next is examining the logic more carefully. Whitelisting of loads and calls - while consistent with the previous code - is rather suspicious. Either way, a behavior change is worthy of it's own patch.
llvm-svn: 338671
In expansion of FCOPYSIGN, the shift node is missing when the two
operands of FCOPYSIGN are of the same size. We should always generate
shift node (if the required shift bit is not zero) to put the sign
bit into the right position, regardless of the size of underlying
types.
Differential Revision: https://reviews.llvm.org/D49973
llvm-svn: 338665
Originally, this was part of a larger refactoring I'd planned, but had to abandoned. I figured the minor improvement in readability was worthwhile.
llvm-svn: 338663
Adding the FP_ROUND nodes when combining FP_TO_[SU]INT of elements
feeding a BUILD_VECTOR into an FP_TO_[SU]INT of the built vector
loses precision. This patch removes the code that adds these nodes
to true f64 operands. It also adds patterns required to ensure
the code is still vectorized rather than converting individual
elements and inserting into a vector.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38342
Differential Revision: https://reviews.llvm.org/D50121
llvm-svn: 338658
AArch64 ELF ABI does not define a static relocation type for TLS offset within
a module, which makes it impossible for compiler to generate a valid
DW_AT_location content for thread local variables. Currently LLVM generates an
invalid R_AARCH64_ABS64 relocation at the DW_AT_location field for a TLS
variable. That causes trouble for linker because thread local variable does
not have an absolute address at link time. AArch64 GCC solves the problem by
not generating DW_AT_location for thread local variables. We should do the
same in LLVM.
Differential Revision: https://reviews.llvm.org/D43860
llvm-svn: 338655
Summary:
Mark a variable as maybe-unused to prevent a -Wunused-but-set-variable
warning in optimized builds where asserts are removed.Test/first commit
to check setup and understand patch submission process.
Reviewers: srhines, pirama, dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49756
llvm-svn: 338654
(Previously reverted in r338442)
I'm told that the breakage came from us using an x86 triple on configs
that didn't have x86 enabled. This is remedied by moving the
debugcounter test to an x86 directory (where there's also a
opt-bisect-isel.ll test for similar reasons).
I can't repro the reverse-iteration failure mentioned in the revert with
this patch, so I assume that a misconfiguration on my end is what caused
that.
Original commit message:
Add DebugCounters to DivRemPairs
For people who don't use DebugCounters, NFCI.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50033
llvm-svn: 338653
The callable flag can be used to indicate that a symbol is callable. If present,
the symbol is callable. If absent, the symbol may or may not be callable (the
client must determine this by context, for example by examining the program
representation that will provide the symbol definition).
This flag will be used in the near future to enable creation of lazy compilation
stubs based on SymbolFlagsMap instances only (without having to provide
additional information to determine which symbols need stubs).
llvm-svn: 338649
This is patch 4 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 4 combines separate DWARFUnitVectors for compile and type units
into a single DWARFUnitVector that contains both. For now the
implementation distinguishes compile units from type units by putting
all compile units at the front of the vector, reflecting the DWARF v4
distinction between .debug_info and .debug_types sections. A future
patch will change this to allow the free mixing of unit kinds, as is
specified by DWARF v5.
Differential Revision: https://reviews.llvm.org/D49744
llvm-svn: 338633
This is patch 3 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 3 simply renames DWARFUnitSection to DWARFUnitVector, as the
object-file section of a unit is nearly irrelevant now.
Differential Revision: https://reviews.llvm.org/D49743
llvm-svn: 338632
This is patch 2 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 2 takes the existing std::deque<DWARFUnitSection> for type units
and makes it a simple DWARFUnitSection, simplifying the handling of
type units and making it more consistent with compile units.
Differential Revision: https://reviews.llvm.org/D49742
llvm-svn: 338629
This is patch 1 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 1 replaces the templated DWARFUnitSection with a non-templated
version. That is, instead of being a SmallVector of pointers to a
specific unit kind, it is not a SmallVector of pointers to the base
class for both type and compile units. Virtual methods are magic.
Differential Revision: https://reviews.llvm.org/D49741
llvm-svn: 338628
Mutate the node type during selection when it
doesn't matter. This avoids an intermediate bitcast
node on targets with legal i16/f16.
Also fixes missing output modifiers on v_cvt_pkrtz_f32_f16,
which I assume are OK.
llvm-svn: 338619
Summary:
Added an option that allows to emit only '.loc' and '.file' kind debug
directives, but disables emission of the DWARF sections. Required for
NVPTX target to support profiling. It requires '.loc' and '.file'
directives, but does not require any DWARF sections for the profiler.
Reviewers: probinson, echristo, dblaikie
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46021
llvm-svn: 338616
It seems like perhaps because cstdio isn't directly included, the
compiler is accidentally picking up wprintf from somewhere else
and trying to call that. Hopefully this fixes it.
llvm-svn: 338614
We now emit a move of -1 before the cmov and do the addition after the cmov just like the case with an extra addition.
This may be slightly worse for code size, but is more consistent with other compilers. And we might be able to hoist the mov -1 outside of loops.
llvm-svn: 338613
This is useful for understanding how our demangler processes
back references and for investigating issues related to
back references. But it's a feature only useful for debugging
the demangling process itself, so I'm marking it hidden.
llvm-svn: 338609
After we detected the presence of a template via ?$ we would proceed by
only demangling a simple unqualified name. This means we would fail on
templated operators (and perhaps other yet-to-be-determined things)
This was discovered while doing some refactoring to store richer
semantic information about the demangled types to pave the way for
overhauling the way we handle backreferences. (Specifically, we need to
defer recording or resolving back-references until a symbol has been
completely demangled, because we need to use information that only
occurs later in the mangled string to decide whether a back-reference
should be recorded.)
Differential Revision: https://reviews.llvm.org/D50145
llvm-svn: 338608
Summary:
D25878, which added support for !absolute_symbol for normal X86 ISel,
did not add support for materializing references to absolute symbols for
X86 FastISel. This causes build failures because FastISel generates
PC-relative relocations for absolute symbols. Fall back to normal ISel
for references to !absolute_symbol GVs. Fix for PR38200.
Reviewers: pcc, craig.topper
Reviewed By: pcc
Subscribers: hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D50116
llvm-svn: 338599
The bug is visible in the constant-folded x86 tests. We can't use the
negated shift amount when the type is not power-of-2:
https://rise4fun.com/Alive/US1r
...so in that case, use the regular lowering that includes a select
to guard against a shift-by-bitwidth. This path is improved by only
calculating the modulo shift amount once now.
Also, improve the rotate (with power-of-2 size) lowering to use
a negate rather than subtract from bitwidth. This improves the
codegen whether we have a rotate instruction or not (although
we can still see that we're not matching to a legal rotate in
all cases).
llvm-svn: 338592
There is nothing x86-specific about this code, so it'd be nice to make this available for other targets to use in the future (and get it out of X86ISelLowering!).
Differential Revision: https://reviews.llvm.org/D50083
llvm-svn: 338586
This patch just extract code into a separate function to remove some
duplication between the old and new pass manager pipeline. Due to the
different CGSCC iterators used, not all code duplication was eliminated.
llvm-svn: 338585
Getting the DWARF types section is only implemented for ELF object
files. We already disabled emitting debug types in clang (r337717), but
now we also report an fatal error (rather than crashing) when trying to
obtain this section in MC. Additionally we ignore the generate debug
types flag for unsupported target triples.
See PR38190 for more information.
Differential revision: https://reviews.llvm.org/D50057
llvm-svn: 338527
Summary:
Add _L to _LZ image intrinsic table mapping to table gen.
In ISelLowering check if image intrinsic has lod and if it's equal
to zero, if so remove lod and change opcode to equivalent mapped _LZ.
Change-Id: Ie24cd7e788e2195d846c7bd256151178cbb9ec71
Subscribers: arsenm, mehdi_amini, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49483
llvm-svn: 338523
The DAG combiner logic to simplify AND masks in shift counts is invalid.
While it is true that the SystemZ shift instructions ignore all but the
low 6 bits of the shift count, it is still invalid to simplify the AND
masks while the DAG still uses the standard shift operators (which are
*not* defined to match the SystemZ instruction behavior).
Instead, this patch performs equivalent operations during instruction
selection. For completely removing the AND, this now happens via
additional DAG match patterns implemented by a multi-alternative
PatFrags. For simplifying a 32-bit AND to a 16-bit AND, the existing DAG
patterns were already mostly OK, they just needed an output XForm to
actually truncate the immediate value.
Unfortunately, the latter change also exposed a bug in TableGen: it
seems XForms are currently only handled correctly for direct operands of
the outermost operation node. This patch also fixes that bug by simply
recurring through the whole pattern. This should be NFC for all other
targets.
Differential Revision: https://reviews.llvm.org/D50096
llvm-svn: 338521
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338494
It's not strictly required by the transform of the cmov and the add, but it makes sure we restrict it to the cases we know we want to match.
While there canonicalize the operand order of the cmov to simplify the matching and emitting code.
llvm-svn: 338492
This revision implements support for generating DWARFv5 .debug_addr section.
The implementation is pretty straight-forward: we just check the dwarf version
and emit section header if needed.
Reviewers: aprantl, dblaikie, probinson
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D50005
llvm-svn: 338487
This patch intends to enable jump threading when a method whose return type is std::pair<int, bool> or std::pair<bool, int> is inlined.
For example, jump threading does not happen for the if statement in func.
std::pair<int, bool> callee(int v) {
int a = dummy(v);
if (a) return std::make_pair(dummy(v), true);
else return std::make_pair(v, v < 0);
}
int func(int v) {
std::pair<int, bool> rc = callee(v);
if (rc.second) {
// do something
}
SROA executed before the method inlining replaces std::pair by i64 without splitting in both callee and func since at this point no access to the individual fields is seen to SROA.
After inlining, jump threading fails to identify that the incoming value is a constant due to additional instructions (like or, and, trunc).
This series of patch add patterns in InstructionSimplify to fold extraction of members of std::pair. To help jump threading, actually we need to optimize the code sequence spanning multiple BBs.
These patches does not handle phi by itself, but these additional patterns help NewGVN pass, which calls instsimplify to check opportunities for simplifying instructions over phi, apply phi-of-ops optimization to result in successful jump threading.
SimplifyDemandedBits in InstCombine, can do more general optimization but this patch aims to provide opportunities for other optimizers by supporting a simple but common case in InstSimplify.
This first patch in the series handles code sequences that merges two values using shl and or and then extracts one value using lshr.
Differential Revision: https://reviews.llvm.org/D48828
llvm-svn: 338485
EFLAGS copy lowering.
If you have a branch of LLVM, you may want to cherrypick this. It is
extremely unlikely to hit this case empirically, but it will likely
manifest as an "impossible" branch being taken somewhere, and will be
... very hard to debug.
Hitting this requires complex conditions living across complex control
flow combined with some interesting memory (non-stack) initialized with
the results of a comparison. Also, because you have to arrange for an
EFLAGS copy to be in *just* the right place, almost anything you do to
the code will hide the bug. I was unable to reduce anything remotely
resembling a "good" test case from the place where I hit it, and so
instead I have constructed synthetic MIR testing that directly exercises
the bug in question (as well as the good behavior for completeness).
The issue is that we would mistakenly assume any SETcc with a valid
condition and an initial operand that was a register and a virtual
register at that to be a register *defining* SETcc...
It isn't though....
This would in turn cause us to test some other bizarre register,
typically the base pointer of some memory. Now, testing this register
and using that to branch on doesn't make any sense. It even fails the
machine verifier (if you are running it) due to the wrong register
class. But it will make it through LLVM, assemble, and it *looks*
fine... But wow do you get a very unsual and surprising branch taken in
your actual code.
The fix is to actually check what kind of SETcc instruction we're
dealing with. Because there are a bunch of them, I just test the
may-store bit in the instruction. I've also added an assert for sanity
that ensure we are, in fact, *defining* the register operand. =D
llvm-svn: 338481
It is necessary to generate fixups in .debug_line as relaxation is
enabled due to the address delta may be changed after relaxation.
DWARF will record the mappings of lines and addresses in
.debug_line section. It will encode the information using special
opcodes, standard opcodes and extended opcodes in Line Number
Program. I use DW_LNS_fixed_advance_pc to encode fixed length
address delta and DW_LNE_set_address to encode absolute address
to make it possible to generate fixups in .debug_line section.
Differential Revision: https://reviews.llvm.org/D46850
llvm-svn: 338477
Previously we were just visiting the blocks in the function in IR order, which
is rather arbitrary. Therefore we wouldn't always visit defs before uses, but
the translation code relies on this assumption in some places.
Only codegen change seen in tests is an elision of a redundant copy.
Fixes PR38396
llvm-svn: 338476
Call shouldOutlineFromFunctionByDefault, isFunctionSafeToOutlineFrom,
getOutliningType, and getMachineOutlinerMBBFlags using the correct
TargetInstrInfo. And don't create a MachineFunction for a function
declaration.
The call to getOutliningCandidateInfo is still a little weird, but at
least the weirdness is explicitly called out.
Differential Revision: https://reviews.llvm.org/D49880
llvm-svn: 338465
Disable ARMCodeGenPrepare by default again. It is causing verifier
failues in V8 that look like:
Duplicate integer as switch case
switch i32 %trunc, label %if.end13 [
i32 0, label %cleanup36
i32 0, label %if.then8
], !dbg !4981
i32 0
fatal error: error in backend: Broken function found, compilation aborted!
I will continue reducing the test case and send it along.
llvm-svn: 338452
Correct the address space for the inserted argument
stack slot.
AMDGPU seems to not do anything with this information,
so I don't think this was breaking anything.
llvm-svn: 338428
When lowering calling conventions, prefer to decompose vectors
into the constitute register types. This avoids artifical constraints
to satisfy a wide super-register.
This improves code quality because now optimizations don't need to
deal with the super-register constraint. For example the immediate
folding code doesn't deal with 4 component reg_sequences, so by
breaking the register down earlier the existing immediate folding
code is able to work.
This also avoids the need for the shader input processing code
to manually split vector types.
llvm-svn: 338416
Don't declare them as X86SchedWritePair when the folded class will never be used.
Note: MOVBE (load/store endian conversion) instructions tend to have a very different behaviour to BSWAP.
llvm-svn: 338412
As was done for vector rotations, we can efficiently use ISD::MULHU for vXi8/vXi16 ISD::SRL lowering.
Shift-by-zero cases are still problematic (mainly on v32i8 due to extra AND/ANDN/OR or VPBLENDVB blend masks but v8i16/v16i16 aren't great either if PBLENDW fails) so I've limited this first patch to known non-zero cases if we can't easily use PBLENDW.
Differential Revision: https://reviews.llvm.org/D49562
llvm-svn: 338407
This patch does the same thing as r338153 for COFF.
Note that this patch affects only the order of log messages.
The output file is already deterministic.
Differential Revision: https://reviews.llvm.org/D50023
llvm-svn: 338406
Summary:
Similar to D49636, but for PMADDUBSW. This instruction has the additional complexity that the addition of the two products saturates to 16-bits rather than wrapping around. And one operand is treated as signed and the other as unsigned.
A C example that triggers this pattern
```
static const int N = 128;
int8_t A[2*N];
uint8_t B[2*N];
int16_t C[N];
void foo() {
for (int i = 0; i != N; ++i)
C[i] = MIN(MAX((int16_t)A[2*i]*(int16_t)B[2*i] + (int16_t)A[2*i+1]*(int16_t)B[2*i+1], -32768), 32767);
}
```
Reviewers: RKSimon, spatel, zvi
Reviewed By: RKSimon, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49829
llvm-svn: 338402
This commit fixes two issues with the liveness information after the
call:
1) The code always spills RCX and RDX if InProlog == true, which results
in an use of undefined phys reg.
2) FinalReg, JoinReg, RoundedReg, SizeReg are not added as live-ins to
the basic blocks that use them, therefore they are seen undefined.
https://llvm.org/PR38376
Differential Revision: https://reviews.llvm.org/D50020
llvm-svn: 338400
Workaround bug where the InstCombine pass was asserting on the IR added in lit
test, where we have a bitcast instruction after a GEP from an addrspace cast.
The second bitcast in the test was getting combined into
`bitcast <16 x i32>* %0 to <16 x i32> addrspace(3)*`, which looks like it should
be an addrspace cast instruction instead. Otherwise if control flow is allowed
to continue as it is now we create a GEP instruction
`<badref> = getelementptr inbounds <16 x i32>, <16 x i32>* %0, i32 0`. However
because the type of this instruction doesn't match the address space we hit an
assert when replacing the bitcast with that GEP.
```
void llvm::Value::doRAUW(llvm::Value*, bool): Assertion `New->getType() == getType() && "replaceAllUses of value with new value of different type!"' failed.
```
Differential Revision: https://reviews.llvm.org/D50058
llvm-svn: 338395
Summary:
When inserting lcssa Phi Nodes in the exit block
mak sure to preserve the original instructions DL.
Reviewers: vsk
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D50009
llvm-svn: 338391
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 338390
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338387
This is being done in order to make GVN able to better optimize certain inputs.
MemDep doesn't use PhiValues directly, but does need to notifiy it when things
get invalidated.
Differential Revision: https://reviews.llvm.org/D48489
llvm-svn: 338384