When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362128
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362012
* Adds a 'scalable' flag to VectorType
* Adds an 'ElementCount' class to VectorType to pass (possibly scalable) vector lengths, with overloaded operators.
* Modifies existing helper functions to use ElementCount
* Adds support for serializing/deserializing to/from both textual and bitcode IR formats
* Extends the verifier to reject global variables of scalable types
* Updates documentation
See the latest version of the RFC here: http://lists.llvm.org/pipermail/llvm-dev/2018-July/124396.html
Reviewers: rengolin, lattner, echristo, chandlerc, hfinkel, rkruppe, samparker, SjoerdMeijer, greened, sebpop
Reviewed By: hfinkel, sebpop
Differential Revision: https://reviews.llvm.org/D32530
llvm-svn: 361953
This is a minimal start to correcting a problem most directly discussed in PR38086:
https://bugs.llvm.org/show_bug.cgi?id=38086
We have been hacking around a limitation for FP select patterns by using the
fast-math-flags on the condition of the select rather than the select itself.
This patch just allows FMF to appear with the 'select' opcode. No changes are
needed to "FPMathOperator" because it already includes select-of-FP because
that definition is based on the (return) value type.
Once we have this ability, we can start correcting and adding IR transforms
to use the FMF on a 'select' instruction. The instcombine and vectorizer test
diffs only show that the IRBuilder change is behaving as expected by applying
an FMF guard value to 'select'.
For reference:
rL241901 - allowed FMF with fcmp
rL255555 - allowed FMF with FP calls
Differential Revision: https://reviews.llvm.org/D61917
llvm-svn: 361401
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
Summary:
We hit undefined references building with ThinLTO when one source file
contained explicit instantiations of a template method (weak_odr) but
there were also implicit instantiations in another file (linkonce_odr),
and the latter was the prevailing copy. In this case the symbol was
marked hidden when the prevailing linkonce_odr copy was promoted to
weak_odr. It led to unsats when the resulting shared library was linked
with other code that contained a reference (expecting to be resolved due
to the explicit instantiation).
Add a CanAutoHide flag to the GV summary to allow the thin link to
identify when all copies are eligible for auto-hiding (because they were
all originally linkonce_odr global unnamed addr), and only do the
auto-hide in that case.
Most of the changes here are due to plumbing the new flag through the
bitcode and llvm assembly, and resulting test changes. I augmented the
existing auto-hide test to check for this situation.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, dexonsmith, arphaman, dang, llvm-commits, steven_wu, wmi
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59709
llvm-svn: 360466
TypedDINodeRef<T> is a redundant wrapper of Metadata * that is actually a T *.
Accordingly, change DI{Node,Scope,Type}Ref uses to DI{Node,Scope,Type} * or their const variants.
This allows us to delete many resolve() calls that clutter the code.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D61369
llvm-svn: 360108
COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example.
COMMON /ALPHA/ I, J
For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block.
@alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33!14 = distinct !DISubprogram(…)
!20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha")
!25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24)
!27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression())
!29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28)
!30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression())
!31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28)
!32 = !DIExpression(DW_OP_plus_uconst, 4)
!33 = !DIGlobalVariableExpression(var: !31, expr: !32)
The DWARF generated for this is as follows.
DW_TAG_common_block:
DW_AT_name: alpha
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: common alpha
DW_AT_type: array of 8 bytes
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: i
DW_AT_type: integer*4
DW_AT_location: @Alpha+0
DW_TAG_variable:
DW_AT_name: j
DW_AT_type: integer*4
DW_AT_location: @Alpha+4
Patch by Eric Schweitz!
Differential Revision: https://reviews.llvm.org/D54327
llvm-svn: 357934
Moving subprogram specific flags into DISPFlags makes IR code more readable.
In addition, we provide free space in DIFlags for other
'non-subprogram-specific' debug info flags.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D59288
llvm-svn: 356454
Summary:
The AliasSummary previously contained the AliaseeGUID, which was only
populated when reading the summary from bitcode. This patch changes it
to instead hold the ValueInfo of the aliasee, and always populates it.
This enables more efficient access to the ValueInfo (specifically in the
recent patch r352438 which needed to perform an index hash table lookup
using the aliasee GUID).
As noted in the comments in AliasSummary, we no longer technically need
to keep a pointer to the corresponding aliasee summary, since it could
be obtained by walking the list of summaries on the ValueInfo looking
for the summary in the same module. However, I am concerned that this
would be inefficient when walking through the index during the thin
link for various analyses. That can be reevaluated in the future.
By always populating this new field, we can remove the guard and special
handling for a 0 aliasee GUID when dumping the dot graph of the summary.
An additional improvement in this patch is when reading the summaries
from LLVM assembly we now set the AliaseeSummary field to the aliasee
summary in that same module, which makes it consistent with the behavior
when reading the summary from bitcode.
Reviewers: pcc, mehdi_amini
Subscribers: inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D57470
llvm-svn: 356268
This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This cleans up all InvokeInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57171
llvm-svn: 352910
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every `unreachable` instruction. However,
the optimizer will remove code after calls to functions marked with
`noreturn`. To avoid this UBSan removes `noreturn` from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
`_asan_handle_no_return` before `noreturn` functions. This is important
for functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* `longjmp` (`longjmp` itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the `noreturn` attributes are missing and ASan
cannot unpoison the stack, so it has false positives when stack
unwinding is used.
Changes:
# UBSan now adds the `expect_noreturn` attribute whenever it removes
the `noreturn` attribute from a function
# ASan additionally checks for the presence of this attribute
Generated code:
```
call void @__asan_handle_no_return // Additionally inserted to avoid false positives
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
unreachable
```
The second call to `__asan_handle_no_return` is redundant. This will be
cleaned up in a follow-up patch.
rdar://problem/40723397
Reviewers: delcypher, eugenis
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D56624
llvm-svn: 352003
This broke the RISCV build, and even with that fixed, one of the RISCV
tests behaves surprisingly differently with asserts than without,
leaving there no clear test pattern to use. Generally it seems bad for
hte IR to differ substantially due to asserts (as in, an alloca is used
with asserts that isn't needed without!) and nothing I did simply would
fix it so I'm reverting back to green.
This also required reverting the RISCV build fix in r351782.
llvm-svn: 351796
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
If LTOUnit splitting is disabled, the module summary analysis computes
the summary information necessary to perform single implementation
devirtualization during the thin link with the index and no IR. The
information collected from the regular LTO IR in the current hybrid WPD
algorithm is summarized, including:
1) For vtable definitions, record the function pointers and their offset
within the vtable initializer (subsumes the information collected from
IR by tryFindVirtualCallTargets).
2) A record for each type metadata summarizing the vtable definitions
decorated with that metadata (subsumes the TypeIdentiferMap collected
from IR).
Also added are the necessary bitcode records, and the corresponding
assembly support.
The index-based WPD will be sent as a follow-on.
Depends on D53890.
Reviewers: pcc
Subscribers: mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54815
llvm-svn: 351453
Summary:
Records in the module summary index whether the bitcode was compiled
with the option necessary to enable splitting the LTO unit
(e.g. -fsanitize=cfi, -fwhole-program-vtables, or -fsplit-lto-unit).
The information is passed down to the ModuleSummaryIndex builder via a
new module flag "EnableSplitLTOUnit", which is propagated onto a flag
on the summary index.
This is then used during the LTO link to check whether all linked
summaries were built with the same value of this flag. If not, an error
is issued when we detect a situation requiring whole program visibility
of the class hierarchy. This is the case when both of the following
conditions are met:
1) We are performing LowerTypeTests or Whole Program Devirtualization.
2) There are type tests or type checked loads in the code.
Note I have also changed the ThinLTOBitcodeWriter to also gate the
module splitting on the value of this flag.
Reviewers: pcc
Subscribers: ormris, mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D53890
llvm-svn: 350948
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
Summary:
This patch computes the synthetic function entry count on the whole
program callgraph (based on module summary) and writes the entry counts
to the summary. After function importing, this count gets attached to
the IR as metadata. Since it adds a new field to the summary, this bumps
up the version.
Reviewers: tejohnson
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D43521
llvm-svn: 349076
`Saver` is a StringSaver, which has a few overloads of `save` that all
ultimately just call `StringRef save(StringRef)`. Just take a StringRef
here instead of building up a std::string to convert it to a StringRef.
llvm-svn: 348650
Packing the flags into one bitcode word will save effort in
adding new flags in the future.
Differential Revision: https://reviews.llvm.org/D54755
llvm-svn: 347806
This will hold flags specific to subprograms. In the future
we could potentially free up scarce bits in DIFlags by moving
subprogram-specific flags from there to the new flags word.
This patch does not change IR/bitcode formats, that will be
done in a follow-up.
Differential Revision: https://reviews.llvm.org/D54597
llvm-svn: 347239
An attempt to recommit r346584 after failure on OSX build bot.
Fixed cache key computation in ThinLTOCodeGenerator and added
test case
llvm-svn: 347033
Summary:
Followup from D53596/r346891. Remove the getMDNodeFwdRefOrNull interface
to the MDLoader since it is no longer used. Also improve error messages
when the internal implementation is used within the MDLoader.
Reviewers: steven_wu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54542
llvm-svn: 346899
This is a revised version of D41474.
When the debug location is parsed in BitcodeReader::parseFunction, the
scope and inlinedAt MDNodes are obtained via MDLoader->getMDNodeFwdRefOrNull(),
which will create a forward ref if they were not yet loaded.
Specifically, if one of these MDNodes is in the module level metadata
block, and this is during ThinLTO importing, that metadata block is
lazily loaded.
Most places in that invoke getMDNodeFwdRefOrNull have a corresponding call
to resolveForwardRefsAndPlaceholders which will take care of resolving them.
E.g. places that call getMetadataFwdRefOrLoad, or at the end of parsing a
function-level metadata block, or at the end of the initial lazy load of
module level metadata in order to handle invocations of getMDNodeFwdRefOrNull
for named metadata and global object attachments. However, the calls for
the scope/inlinedAt of debug locations are not backed by any such call to
resolveForwardRefsAndPlaceholders.
To fix this, change the scope and inlinedAt parsing to instead use
getMetadataFwdRefOrLoad, which will ensure the forward refs to lazily
loaded metadata are resolved.
Fixes PR35472.
llvm-svn: 346891
Summary:
Ranges base address specifiers can save a lot of object size in
relocation records especially in optimized builds.
For an optimized self-host build of Clang with split DWARF and debug
info compression in object files, but uncompressed debug info in the
executable, this change produces about 18% smaller object files and 6%
larger executable.
While it would've been nice to turn this on by default, gold's 32 bit
gdb-index support crashes on this input & I don't think there's any
perfect heuristic to implement solely in LLVM that would suffice - so
we'll need a flag one way or another (also possible people might want to
aggressively optimized for executable size that contains debug info
(even with compression this would still come at some cost to executable
size)) - so let's plumb it through.
Differential Revision: https://reviews.llvm.org/D54242
llvm-svn: 346788
The IEEE-754 Standard makes it clear that fneg(x) and
fsub(-0.0, x) are two different operations. The former is a bitwise
operation, while the latter is an arithmetic operation. This patch
creates a dedicated FNeg IR Instruction to model that behavior.
Differential Revision: https://reviews.llvm.org/D53877
llvm-svn: 346774
This patch allows internalising globals if all accesses to them
(from live functions) are from non-volatile load instructions
Differential revision: https://reviews.llvm.org/D49362
llvm-svn: 346584
Summary:
The NotEligibleToImport flag on the GlobalValueSummary was set if it
isn't legal to import (e.g. because it references unpromotable locals)
and when it can't be inlined (in which case importing is pointless).
I split out the inlinable piece into a separate flag on the
FunctionSummary (doesn't make sense for aliases or global variables),
because in the future we may want to import for reasons other than
inlining.
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53345
llvm-svn: 346261
Summary:
This is a revised version of D41474.
When the debug location is parsed in BitcodeReader::parseFunction, the
scope and inlinedAt MDNodes are obtained via MDLoader->getMDNodeFwdRefOrNull(),
which will create a forward ref if they were not yet loaded.
Specifically, if one of these MDNodes is in the module level metadata
block, and this is during ThinLTO importing, that metadata block is
lazily loaded.
Most places in that invoke getMDNodeFwdRefOrNull have a corresponding call
to resolveForwardRefsAndPlaceholders which will take care of resolving them.
E.g. places that call getMetadataFwdRefOrLoad, or at the end of parsing a
function-level metadata block, or at the end of the initial lazy load of
module level metadata in order to handle invocations of getMDNodeFwdRefOrNull
for named metadata and global object attachments. However, the calls for
the scope/inlinedAt of debug locations are not backed by any such call to
resolveForwardRefsAndPlaceholders.
To fix this, change the scope and inlinedAt parsing to instead use
getMetadataFwdRefOrLoad, which will ensure the forward refs to lazily
loaded metadata are resolved.
Fixes PR35472.
Reviewers: dexonsmith, Sunil_Srivastava, vsk
Subscribers: inglorion, eraman, steven_wu, sebpop, mehdi_amini, dmikulin, vsk, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D53596
llvm-svn: 345095
Summary:
In D49565/r337503, the type id record writing was fixed so that only
referenced type ids were emitted into each per-module index for ThinLTO
distributed builds. However, this still left an efficiency issue: each
per-module index checked all type ids for membership in the referenced
set, yielding O(M*N) performance (M indexes and N type ids).
Change the TypeIdMap in the summary to be indexed by GUID, to facilitate
correlating with type identifier GUIDs referenced in the function
summary TypeIdInfo structures. This allowed simplifying other
places where a map from type id GUID to type id map entry was previously
being used to aid this correlation.
Also fix AsmWriter code to handle the rare case of type id GUID
collision.
For a large internal application, this reduced the thin link time by
almost 15%.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51330
llvm-svn: 343021