also gets access to the Sema object performing semantic analysis. This
will be used by the PCH writer to serialize Sema state.
No functionality change.
llvm-svn: 69595
minor accepts-invalid regressions, but we weren't really rejecting them for
the right reason. We really need a more general solution to detect all the
cases of the promotion of arrays with a register storage class.
llvm-svn: 69586
%reg1498<def> = MOV32rm %reg1024, 1, %reg0, 12, %reg0, Mem:LD(4,4) [sunkaddr39 + 0]
%reg1506<def> = MOV32rm %reg1024, 1, %reg0, 8, %reg0, Mem:LD(4,4) [sunkaddr42 + 0]
%reg1486<def> = MOV32rr %reg1506
%reg1486<def> = XOR32rr %reg1486, %reg1498, %EFLAGS<imp-def,dead>
%reg1510<def> = MOV32rm %reg1024, 1, %reg0, 4, %reg0, Mem:LD(4,4) [sunkaddr45 + 0]
=>
%reg1498<def> = MOV32rm %reg2036, 1, %reg0, 12, %reg0, Mem:LD(4,4) [sunkaddr39 + 0]
%reg1506<def> = MOV32rm %reg2037, 1, %reg0, 8, %reg0, Mem:LD(4,4) [sunkaddr42 + 0]
%reg1486<def> = MOV32rr %reg1506
%reg1486<def> = XOR32rr %reg1486, %reg1498, %EFLAGS<imp-def,dead>
%reg1510<def> = MOV32rm %reg2038, 1, %reg0, 4, %reg0, Mem:LD(4,4) [sunkaddr45 + 0]
From linearscan's point of view, each of reg2036, 2037, and 2038 are separate registers, each is "killed" after a single use. The reloaded register is available and it's often clobbered right away. e.g. In thise case reg1498 is allocated EAX while reg2036 is allocated RAX. This means we end up with multiple reloads from the same stack slot in the same basic block.
Now linearscan recognize there are other reloads from same SS in the same BB. So it'll "downgrade" RAX (and its aliases) after reg2036 is allocated until the next reload (reg2037) is done. This greatly increase the likihood reloads from SS are reused.
This speeds up sha1 from OpenSSL by 5.8%. It is also an across the board win for SPEC2000 and 2006.
llvm-svn: 69585
Drop uses of GetFirstInvarInRecord, instead we lookup the ivars we
know are in the record.
- This is somewhat less efficient, but I need to detangle this code
first...
llvm-svn: 69579
useful for macro-heavy codebases that tend to trigger this warning a
lot.
Note that a make clean is required to get the option working; the
dependencies for DiagnosticGroups.inc appear to be broken.
llvm-svn: 69564
will let us test for multiple different warning modes in the same
file in regression tests.
This implements rdar://2362963, a 10-year old feature request :)
llvm-svn: 69560
support it. I don't know what evaluation method we use for complex
arithmetic, so I don't know whether/if we should warn about use of
CX_LIMITED_RANGE.
This concludes my planned hacking on STDC pragmas, flame away :)
llvm-svn: 69556
Let me know if I messed up for some target. Note that for Windows, we
should be able to support it (MSVC supports "__declspec(thread)"), but
I'm pretty sure LLVM doesn't know how to generate the correct code.
llvm-svn: 69552