Summary:
It is incorrect to compare TripCount (which is BECount + 1)
with extraiters (or Count) to check if we should enter unrolled
loop or not, because TripCount can potentially overflow
(when BECount is max unsigned integer).
While comparing BECount with (Count - 1) is overflow safe and
therefore correct.
Reviewer: hfinkel
Differential Revision: http://reviews.llvm.org/D19256
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 267662
Apparently there isn't test coverage for all of these. I'd appreciate
if someone with could reproduce and send me something to reduce, but for
now I've just looked for users of RemapInstruction and MapValue and
ensured they don't accidentally insert nullptr. Here is one of the
bootstraps that caught:
http://lab.llvm.org:8011/builders/clang-x64-ninja-win7/builds/11494
llvm-svn: 266567
Clarify what this RemapFlag actually means.
- Change the flag name to match its intended behaviour.
- Clearly document that it's not supposed to affect globals.
- Add a host of FIXMEs to indicate how to fix the behaviour to match
the intent of the flag.
RF_IgnoreMissingLocals should only affect the behaviour of
RemapInstruction for function-local operands; namely, for operands of
type Argument, Instruction, and BasicBlock. Currently, it is *only*
passed into RemapInstruction calls (and the transitive MapValue calls
that it makes).
When I split Metadata from Value I didn't understand the flag, and I
used it in a bunch of places for "global" metadata.
This commit doesn't have any functionality change, but prepares to
cleanup MapMetadata and MapValue.
llvm-svn: 265628
Summary:
Extending findExistingExpansion can use existing value in ExprValueMap.
This patch gives 0.3~0.5% performance improvements on
benchmarks(test-suite, spec2000, spec2006, commercial benchmark)
Reviewers: mzolotukhin, sanjoy, zzheng
Differential Revision: http://reviews.llvm.org/D15559
llvm-svn: 260938
A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:
- The APIs have access to pretty well any Pass state they want, so
it's hard to tell what they may or may not do.
- Other APIs have copied these and pass around a `Pass *` even though
they don't even use it. Some of these just hand a nullptr to the API
since the callers don't even have a pass available.
- Passes in the new pass manager don't work like the current ones, so
the APIs can't be used as is there.
Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.
llvm-svn: 255669
Continuing the work from last week to remove implicit ilist iterator
conversions. First related commit was probably r249767, with some more
motivation in r249925. This edition gets LLVMTransformUtils compiling
without the implicit conversions.
No functional change intended.
llvm-svn: 250142
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
through APIs that are no longer necessary now that the update API has
been removed.
This will make changes to the AA interfaces significantly less
disruptive (I hope). Either way, it seems like a really nice cleanup.
llvm-svn: 242882
We would create a phi node with a zero initialized operand instead of
undef in the case where no value was originally available. This was
problematic for x86_mmx which has no null value.
llvm-svn: 241143
Use IRBuilder::Create(Cond)?Br instead of constructing instructions
manually with BranchInst::Create(). It's consistent with other
uses of IRBuilder in this pass, and has an additional important
benefit:
Using IRBuilder will ensure that new branch instruction will get
the same debug location as original terminator instruction it will
eventually replace.
For now I'm not adding a testcase, as currently original terminator
instruction also lack debug location due to missing debug location
propagation in BasicBlock::splitBasicBlock. That is, the testcase
will accompany the fix for the latter I'm going to mail soon.
llvm-svn: 239550
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count. Avoid runtime unrolling if this computation
will be expensive.
Depends on D8993.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8994
llvm-svn: 234846
Clean up a predicate I added in r229731, fix the relevant comment and
add a test case. The earlier version is confusing to read and was also
buggy (probably not a coincidence) till Alexey fixed it in r233881.
llvm-svn: 234701
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
Runtime unrollng will introduce a runtime check in loop prologue.
If the unrolled loop is a inner loop, then the proglogue will be inside
the outer loop. LICM pass can help to promote the runtime check out if
the checked value is loop invariant.
llvm-svn: 231630
Don't spend the entire iteration space in the scalar loop prologue if
computing the trip count overflows. This change also gets rid of the
backedge check in the prologue loop and the extra check for
overflowing trip-count.
Differential Revision: http://reviews.llvm.org/D7715
llvm-svn: 229731
Patch by: Igor Laevsky <igor@azulsystems.com>
"Currently SplitBlockPredecessors generates incorrect code in case if basic block we are going to split has a landingpad. Also seems like it is fairly common case among it's users to conditionally call either SplitBlockPredecessors or SplitLandingPadPredecessors. Because of this I think it is reasonable to add this condition directly into SplitBlockPredecessors."
Differential Revision: http://reviews.llvm.org/D7157
llvm-svn: 227390
and updated.
This may appear to remove handling for things like alias analysis when
splitting critical edges here, but in fact no callers of SplitEdge
relied on this. Similarly, all of them wanted to preserve LCSSA if there
was any update of the loop info. That makes the interface much simpler.
With this, all of BasicBlockUtils.h is free of Pass arguments and
prepared for the new pass manager. This is tho majority of utilities
that relied on pass arguments.
llvm-svn: 226459
SplitLandingPadPredecessors and remove the Pass argument from its
interface.
Another step to the utilities being usable with both old and new pass
managers.
llvm-svn: 226426
rather than relying on the pass object.
This one is a bit annoying, but will pay off. First, supporting this one
will make the next one much easier, and for utilities like LoopSimplify,
this is moving them (slowly) closer to not having to pass the pass
object around throughout their APIs.
llvm-svn: 226396
interface, removing Pass from its interface.
This also makes those analyses optional so that passes which don't even
preserve these (or use them) can skip the logic entirely.
llvm-svn: 226394
cleaner to derive from the generic base.
Thise removes a ton of boiler plate code and somewhat strange and
pointless indirections. It also remove a bunch of the previously needed
friend declarations. To fully remove these, I also lifted the verify
logic into the generic LoopInfoBase, which seems good anyways -- it is
generic and useful logic even for the machine side.
llvm-svn: 226385
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
Currently LoopUnroll generates a prologue loop before the main loop
body to execute first N%UnrollFactor iterations. Also, this loop is
used if trip-count can overflow - it's determined by a runtime check.
However, we've been mistakenly optimizing this loop to a linear code for
UnrollFactor = 2, not taking into account that it also serves as a safe
version of the loop if its trip-count overflows.
llvm-svn: 222451
Runtime unrolling will create a prologue to execute the extra
iterations which is can't divided by the unroll factor. It
generates an if-then-else sequence to jump into a factor -1
times unrolled loop body, like
extraiters = tripcount % loopfactor
if (extraiters == 0) jump Loop:
if (extraiters == loopfactor) jump L1
if (extraiters == loopfactor-1) jump L2
...
L1: LoopBody;
L2: LoopBody;
...
if tripcount < loopfactor jump End
Loop:
...
End:
It means if the unroll factor is 4, the loop body will be 7
times unrolled, 3 are in loop prologue, and 4 are in the loop.
This commit is to use a loop to execute the extra iterations
in prologue, like
extraiters = tripcount % loopfactor
if (extraiters == 0) jump Loop:
else jump Prol
Prol: LoopBody;
extraiters -= 1 // Omitted if unroll factor is 2.
if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
if (tripcount < loopfactor) jump End
Loop:
...
End:
Then when unroll factor is 4, the loop body will be copied by
only 5 times, 1 in the prologue loop, 4 in the original loop.
And if the unroll factor is 2, new loop won't be created, just
as the original solution.
llvm-svn: 218604
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Patch by Brendon Cahoon!
This extends the existing LoopUnroll and LoopUnrollPass. Brendon
measured no regressions in the llvm test suite with -unroll-runtime
enabled. This implementation works by using the existing loop
unrolling code to unroll the loop by a power-of-two (default 8). It
generates an if-then-else sequence of code prior to the loop to
execute the extra iterations before entering the unrolled loop.
llvm-svn: 146245