15f3cd6bfc moved the handling of UsingType
to a later point in the function getFullyQualifiedType. This moved it
after the removal of an ElaboratedType and its qualifiers. However,
the qualifiers were not added back, causing the fully qualified type to
have a qualifier mismatch with the original type. Make sure the
qualifers are added before continuing to fully qualify the type.
This is a follow-up to 2ebfda2417
(replace "if" with "else if" since the cases nuw/nsw
were meant to be handled separately).
Test plan:
1/ ninja check-llvm check-clang check-lld
2/ Bootstrapped LLVM/Clang pass tests
This is a follow-up to D130058 to fix how we handle the Max value we obtain from
getValueRange(...) in IntExprEvaluator::VisitCastExpr(...) which in the case of
an enum that contains an enumerator with the max integer value will overflow by
one.
The fix is to decrement the value of Max and use slt and ult for comparison Vs
sle and ule.`
Differential Revision: https://reviews.llvm.org/D130811
Currently when assertions are enabled, the cc1 flag is not
inserted into the llvmcmd section of object files with embedded
bitcode. This deviates from the normal behavior where this is
the first flag that is inserted. This error stems from incorrect
use of the function generateCC1CommandLine() which requires
manually adding in the -cc1 flag which is currently not done.
Reviewed By: jansvoboda11
Differential Revision: https://reviews.llvm.org/D130620
Fix the hardcoded check for `FuncOp` in `getCommonBlock` utility: the
check should have been for an op that starts an affine scope. The
incorrect block returned in turn causes dependence analysis to function
incorrectly.
This change allows affine store-load forwarding to work correctly inside
any ops that start an affine scope.
Reviewed By: ftynse, dcaballe
Differential Revision: https://reviews.llvm.org/D130749
This is useful to enable sharing of the same PCH file even when it's intended for a different output path.
The only information this option disables writing is for `ORIGINAL_PCH_DIR` record which is treated as optional and (when present) used as fallback for resolving input file paths relative to it.
Differential Revision: https://reviews.llvm.org/D130710
The method used in 4191d661c7 was fragile because it didn't consider cross-platform builds and rely on enlisting unsupported targets. Uses the host-supports-jit mechanism to make an escape path. This should fix buildbot failures happening in upstream as well as out-of-tree.
This patch refactors BAT to be testable as a library, so we
can have open-source tests on it. This further fixes an issue with
basic blocks that lack a valid input offset, making BAT omit those
when writing translation tables.
Test Plan: new testcases added, new testing tool added (llvm-bat-dump)
Differential Revision: https://reviews.llvm.org/D129382
The isa<Constant> check could misfire on an instruction with 2 constant
operands. This bug was introduced with bb789381fc (D36988).
See issue #56810 for a C source example that exposed the bug.
For constants in the range [-2047, 2048] we use addi. If the constant
is -2048 we can use xori. If we don't match this explicitly, we'll
emit an LI for the -2048 followed by an XOR.
A LazySymbol is one that lives in `.a` archive and gets pulled in by a
strong reference. However, weak references to such symbols do not
result in them be loaded from the archive. In this case we want to
treat such symbols at undefined rather then lazy, once symbols
resolution is complete.
This fixes a crash bug in the linker when weakly referenced symbol that
lives in an archive file is live at the end of the link. In the case of
dynamic linking this is expected to turn into an import with (in the
case of a function symbol) a function index.
Differential Revision: https://reviews.llvm.org/D130736
Fixing potential int overflow and uninitialized variables.
These were found by Coverity static code inspection.
Differential Revision: https://reviews.llvm.org/D130795
The table of contents in the HTML version of this doc takes up 25 pages
(in my browser, on my 4K monitor) and is too long for me to navigate
comfortably. And most of it is irrelevant detail like this:
- Bitwise Binary Operations
- 'shl' Instruction
- Syntax:
- Overview:
- Arguments:
- Semantics:
- Example:
- 'lshr' Instruction
- Syntax:
- Overview:
- Arguments:
- Semantics:
- Example:
Reducing the contents depth from 4 to 3 removes most of this detail,
leaving just a list of instructions, which only takes up 7 pages and I
find it much easier to navigate.
Incidentally the depth was set to 3 when this document was first
converted to reST and was only increased to 4 in what looks like an
accidental change: 080133453b
Differential Revision: https://reviews.llvm.org/D130635
This patch enables context-sensitive analysis of multiple different calls to the same function (see the `ContextSensitiveSetBothTrueAndFalse` example in the `TransferTest` suite) by replacing the `Environment` copy-assignment with a call to the new `popCall` method, which `std::move`s some fields but specifically does not move `DeclToLoc` and `ExprToLoc` from the callee back to the caller.
To enable this, the `StorageLocation` for a given parameter needs to be stable across different calls to the same function, so this patch also improves the modeling of parameter initialization, using `ReferenceValue` when necessary (for arguments passed by reference).
This approach explicitly does not work for recursive calls, because we currently only plan to use this context-sensitive machinery to support specialized analysis models we write, not analysis of arbitrary callees.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130726
Instead of detecting `_Float16` support at CMake configuration time,
detect it at compile time by checking for the predefined (by the
compiler) macro `__FLT16_MAX__` instead.
This solves the issue where compiler-rt is built simultaneously for both
x86_64 and i386 targets, and the CMake configuration uses x86_64
compilation to detect `_Float16` support, while it may not be supported
by the i386 target (if it does not have SSE2).
While here, rename `COMPILERT_RT_HAS_FLOAT16` to `CRT_HAS_FLOAT16`, to
conform more to the naming style used in `int_lib.h` and `int_types.h`.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D130718
It is not necessary to wait for all outstanding memory operations before
barriers on hardware that can back off of the barrier in the event of an
exception when traps are enabled. Add a new subtarget feature which
tracks which HW has this ability.
Reviewed By: #amdgpu, rampitec
Differential Revision: https://reviews.llvm.org/D130722
With the goal of reusing that handler to do other things besides
handling assertions (such as terminating when an exception is thrown
under -fno-exceptions), the name `__libcpp_assertion_handler` doesn't
really make sense anymore.
Furthermore, I didn't want to use the name `__libcpp_abort_handler`,
since that would give the impression that the handler is called
whenever `std::abort()` is called, which is not the case at all.
Differential Revision: https://reviews.llvm.org/D130562
After the intoduction of global destructor support, there is a possiblity to run invalid instructions in the destructor of Interpreter class. Completely disable tests in platforms with failing test cases.
Differential Revision: https://reviews.llvm.org/D130786
C99 6.7.4p2 clarifies that a function specifier can only be used in the
declaration of a function. _Noreturn is a function specifier, so it is
a constraint violation to write it on a structure or union field, but
we missed that case.
Fixes#56800
The implementation and API of GEP Op has gotten a bit convoluted over the time. Issues with it are:
* Misleading naming: `indices` actually only contains the dynamic indices, not all of them. To get the amount of indices you need to query the size of `structIndices`
* Very difficult to iterate over all indices properly: One had to iterate over `structIndices`, check whether it contains the magic constant `kDynamicIndex`, if it does, access the next value in `index` etc.
* Inconvenient to build: One either has create lots of constant ops for every index or have an odd split of passing both a `ValueRange` as well as a `ArrayRef<int32_t>` filled with `kDynamicIndex` at the correct places.
* Implementation doing verification in the build method
and more.
This patch attempts to address all these issues via convenience classes and reworking the way GEP Op works:
* Adds `GEPArg` class which is a sum type of a `int32_t` and `Value` and is used to have a single convenient easy to use `ArrayRef<GEPArg>` in the builders instead of the previous `ValueRange` + `ArrayRef<int32_t>` builders.
* Adds `GEPIndicesAdapter` which is a class used for easy random access and iteration over the indices of a GEP. It is generic and flexible enough to also instead return eg. a corresponding `Attribute` for an operand inside of `fold`.
* Rename `structIndices` to `rawConstantIndices` and `indices` to `dynamicIndices`: `rawConstantIndices` signifies one shouldn't access it directly as it is encoded, and `dynamicIndices` is more accurate and also frees up the `indices` name.
* Add `getIndices` returning a `GEPIndicesAdapter` to easily iterate over the GEP Ops indices.
* Move the verification/asserts out of the build method and into the `verify` method emitting op error messages.
* Add convenient builder methods making use of `GEPArg`.
* Add canonicalizer turning dynamic indices with constant values into constant indices to have a canonical representation.
The only breaking change is for any users building GEPOps that have so far used the old `ValueRange` + `ArrayRef<int32_t>` builder as well as those using the generic syntax.
Another follow up patch then goes through upstream and makes use of the new `ArrayRef<GEPArg>` builder to remove a lot of code building constants for GEP indices.
Differential Revision: https://reviews.llvm.org/D130730
Similarly to -o output directories will not be created so -Map being
copied verbatim will likely cause ld.lld @response.txt to fail.
Differential Revision: https://reviews.llvm.org/D130681