instructions which have no direct register usage.
Darwin 'as' accepts:
add $0, (%rax)
but rejects
mov $0, (%rax)
for example.
Given that, only accept suffix matches which match exactly one form. We still
need to emit nice diagnostics for failures...
llvm-svn: 103015
- The idea is that when a match fails, we just try to match each of +'b', +'w',
+'l'. If exactly one matches, we assume this is a mnemonic prefix and accept
it. If all match, we assume it is width generic, and take the 'l' form.
- This would be a horrible hack, if it weren't so simple. Therefore it is an
elegant solution! Chris gets the credit for this particular elegant
solution. :)
- Next step to making this more robust is to have the X86 matcher generate the
mnemonic prefix information. Ideally we would also compute up-front exactly
which mnemonic to attempt to match, but this may require more custom code in
the matcher than is really worth it.
llvm-svn: 103012
temporary workaround for matching inc/dec on x86_64 to the correct instruction.
- This hack will eventually be replaced with a robust mechanism for handling
matching instructions based on the available target features.
llvm-svn: 98858
Lock prefix, Repeat string operation prefixes and the Segment override prefixes.
Also added versions of the move string and store string instructions without the
repeat prefixes to X86InstrInfo.td. And finally marked the rep versions of
move/store string records in X86InstrInfo.td as isCodeGenOnly = 1 so tblgen is
happy building the disassembler files.
llvm-svn: 95252
something totally broken and parsing them as immediates, but the .td file also
had the wrong match class so things sortof worked. Except, that is, that we
would parse
movl $0, %eax
as
movl 0, %eax
Feel free to guess how well that worked.
llvm-svn: 94869
be static. Also made it possible for clients to get it
and no other functions from ...GenAsmMatcher.inc by
defining REGISTERS_ONLY before including GenAsmMatcher.inc.
This sets the stage for target-specific lexers that can
identify registers and return AsmToken::Register as
appropriate.
llvm-svn: 94266
the new ParseInstruction method just parses and returns a list of
target operands. A new MatchInstruction interface is used to
turn the operand list into an MCInst.
This requires new/deleting all the operands, but it also gives
targets the ability to use polymorphic operands if they want to.
llvm-svn: 93469
that things like .word can be parsed as target specific. Moved parsing .word
out of AsmParser.cpp into X86AsmParser.cpp as it is 2 bytes on X86 and 4 bytes
for other targets that support the .word directive.
llvm-svn: 81461
from MCAsmLexer.h in preparation of supporting other targets. Changed the
X86AsmParser code to reflect this by removing AsmLexer::LexPercent and looking
for AsmToken::Percent when parsing in places that used AsmToken::Register.
Then changed X86ATTAsmParser::ParseRegister to parse out registers as an
AsmToken::Percent followed by an AsmToken::Identifier.
llvm-svn: 80929
specific printer (this only works on x86, for now).
- This makes it possible to do some correctness checking of the parsing and
matching, since we can compare the results of 'as' on the original input, to
those of 'as' on the output from llvm-mc.
- In theory, we could now have an easy ATT -> Intel syntax converter. :)
llvm-svn: 78986
- This doesn't actually improve the algorithm (its still linear), but the
generated (match) code is now fairly compact and table driven. Still need a
generic string matcher.
- The table still needs to be compressed, this is quite simple to do and should
shrink it to under 16k.
- This also simplifies and restructures the code to make the match classes more
explicit, in anticipation of resolving ambiguities.
llvm-svn: 78461