Mark G_ADD, G_SUB, G_MUL, G_AND, G_OR and G_XOR as legal for both ARM
and Thumb2.
Extract the legalizer tests for these opcodes into another file.
Add tests for the instruction selector.
llvm-svn: 349142
Mark G_SEXT, G_ZEXT and G_ANYEXT to 32 bits as legal and add support for
them in the instruction selector. This uses handwritten code again
because the patterns that are generated with TableGen are tuned for what
the DAG combiner would produce and not for simple sext/zext nodes.
Luckily, we only need to update the opcodes to use the Thumb2 variants,
everything else can be reused from ARM.
llvm-svn: 349026
Summary:
All targets either just return false here or properly model `Fast`, so I
don't think there is any reason to prevent CodeGen from doing the right
thing here.
Subscribers: nemanjai, javed.absar, eraman, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D55365
llvm-svn: 349016
Unfortunately we can't use TableGen for this because it doesn't yet
support predicates on the source pattern root. Therefore, add a bit of
handwritten code to the instruction selector to handle the most basic
cases.
Also mark them as legal and extract their legalizer test cases to a new
test file.
llvm-svn: 348920
This patch restricts the capability of G_MERGE_VALUES, and uses the new
G_BUILD_VECTOR and G_CONCAT_VECTORS opcodes instead in the appropriate places.
This patch also includes AArch64 support for selecting G_BUILD_VECTOR of <4 x s32>
and <2 x s64> vectors.
Differential Revisions: https://reviews.llvm.org/D53629
llvm-svn: 348788
When we had dynamic call frames (i.e. sp adjustment around each call) we
were including that adjustment into offsets calculated based on r6, even
though it's only sp that changes. This led to incorrect stack slot
accesses.
llvm-svn: 348591
Adds fatal errors for any target that does not support the Tiny or Kernel
codemodels by rejigging the getEffectiveCodeModel calls.
Differential Revision: https://reviews.llvm.org/D50141
llvm-svn: 348585
This has two positive effects. First, using a custom node prevents
recombination leading to an infinite loop since the output DAG is notionally a
little more complex than the input one. Using a flag-setting instruction also
allows the subtraction to be folded with the related comparison more easily.
https://reviews.llvm.org/D53190
llvm-svn: 348122
Don't expand SDIV with an immediate that is a power of 2 if we optimise for
minimum code size. For example:
sdiv %1, i32 4
gets expanded to a sequence of 3 instructions, but this is suboptimal for
minimum code size so instead we just generate a MOV and a SDIV if integer
division is supported.
Differential Revision: https://reviews.llvm.org/D54546
llvm-svn: 347965
SplitVecOp_TruncateHelper tries to promote the result type while splitting FP_TO_SINT/UINT. It then concatenates the result and introduces a truncate to the original result type. But it does this without inserting the AssertZExt/AssertSExt that the regular result type promotion would insert. Nor does it turn FP_TO_UINT into FP_TO_SINT the way normal result type promotion for these operations does. This is bad on X86 which doesn't support FP_TO_SINT until AVX512.
This patch disables the use of SplitVecOp_TruncateHelper for these operations and just lets normal promotion handle it. I've tweaked a couple things in X86ISelLowering to avoid a few obvious regressions there. I believe all the changes on X86 are improvements. The other targets look neutral.
Differential Revision: https://reviews.llvm.org/D54906
llvm-svn: 347593
We can now select CLZ via the TableGen'erated code, so support G_CTLZ
and G_CTLZ_ZERO_UNDEF throughout the pipeline for types <= s32.
Legalizer:
If the CLZ instruction is available, use it for both G_CTLZ and
G_CTLZ_ZERO_UNDEF. Otherwise, use a libcall for G_CTLZ_ZERO_UNDEF and
lower G_CTLZ in terms of it.
In order to achieve this we need to add support to the LegalizerHelper
for the legalization of G_CTLZ_ZERO_UNDEF for s32 as a libcall (__clzsi2).
We also need to allow lowering of G_CTLZ in terms of G_CTLZ_ZERO_UNDEF
if that is supported as a libcall, as opposed to just if it is Legal or
Custom. Due to a minor refactoring of the helper function in charge of
this, we will also allow the same behaviour for G_CTTZ and G_CTPOP.
This is not going to be a problem in practice since we don't yet have
support for treating G_CTTZ and G_CTPOP as libcalls (not even in
DAGISel).
Reg bank select:
Map G_CTLZ to GPR. G_CTLZ_ZERO_UNDEF should not make it to this point.
Instruction select:
Nothing to do.
llvm-svn: 347545
Both zext and sext are currently allowed during the search for narrow
sequences and sexts operands are later added to the mac candidates.
But operands of muls are also added, without checking whether they're
sext or zext, which means we can generate a signed smlad when we
shouldn't.
Differential Revision: https://reviews.llvm.org/D54790
llvm-svn: 347542
I am working on making FileCheck stricter (in D54769 and D53710) so that it
issues diagnostics when there's something wrong with tests.
This is a cleanup for dangling prefixes in the ARM codegen tests, e.g.:
--check-prefixes=A,B
where A occurs in the check file, but B doesn't. This can be innocent if A does
all the required checking, but can also be a bug in that test if it results in
the test actually not checking anything (if A for example only checks a common
label). Test CodeGen/ARM/smml.ll is such an example.
Differential Revision: https://reviews.llvm.org/D54842
llvm-svn: 347487
This code takes a truncate, fp_to_int, or int_to_fp with a legal result type and an input type that needs to be split and enlarges the elements in the result type before doing the split. Then inserts a follow up truncate or fp_round after concatenating the two halves back together.
But if the input type of the original op is being split on its way to ultimately being scalarized we're just going to end up building a vector from scalars and then truncating or rounding it in the vector register. Seems kind of silly to enlarge the result element type of the operation only to end up with scalar code and then building a vector with large elements only to make the elements smaller again in the vector register. Seems better to just try to get away producing smaller result types in the scalarized code.
The X86 test case that changes is a pretty contrived test case that exists because of a bug we used to have in our AVG matching code. I think the code is better now, but its not realistic anyway.
llvm-svn: 347482
We fail to canonicalize IR this way (prefer 'not' ops to arbitrary 'xor'),
but that would not matter without this patch because DAGCombiner was
reversing that transform. I think we need this transform in the backend
regardless of what happens in IR to catch cases where the shift-xor
is formed late from GEP or other ops.
https://rise4fun.com/Alive/NC1
Name: shl
Pre: (-1 << C2) == C1
%shl = shl i8 %x, C2
%r = xor i8 %shl, C1
=>
%not = xor i8 %x, -1
%r = shl i8 %not, C2
Name: shr
Pre: (-1 u>> C2) == C1
%sh = lshr i8 %x, C2
%r = xor i8 %sh, C1
=>
%not = xor i8 %x, -1
%r = lshr i8 %not, C2
https://bugs.llvm.org/show_bug.cgi?id=39657
llvm-svn: 347478
r334871 has made it possible for TableGen'erated code to select BFC, but
it has not added a test for it on the ARM side. Add it now to make sure
we don't introduce regressions if we ever change anything about that
rule.
llvm-svn: 347447
Truncs are treated as sources if their produce a value of the same
type as the one we currently trying to promote. Truncs used to be
considered as a sink if their operand was the same value type.
We now allow smaller types in the search, so we should search through
truncs that produce a smaller value. These truncs can then be
converted to an AND mask.
This leaves sinks as being:
- points where the value in the register is being observed, such as
an icmp, switch or store.
- points where value types have to match, such as calls and returns.
- zext are included to ease the transformation and are generally
removed later on.
During this change, it also became apart from truncating sinks was
broken: if a sink used a source, its type information had already
been lost by the time the truncation happens. So I've changed the
method of caching the type information.
Differential Revision: https://reviews.llvm.org/D54515
llvm-svn: 347191
The scan was incorrectly skipping the first instruction, so a register
could appear to be dead when it was actually live. This eventually leads
to a machine verifier failure and miscompile in arm-ldst-opt.
Differential Revision: https://reviews.llvm.org/D54491
llvm-svn: 346821
Summary:
Handle extra output from index loads in cases where we wish to
forward a load value directly from a preceeding store.
Fixes PR39571.
Reviewers: peter.smith, rengolin
Subscribers: javed.absar, hiraditya, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54265
llvm-svn: 346654
LDRcp should be deleted when the dest register is dead in register
coalescing. Without MemOp, dead LDRcp will cause dead constant pool
value which references to non-existing label.
Patch by Yin Ma.
Differential Revision: https://reviews.llvm.org/D54173
llvm-svn: 346563
Now that we have mixed type sizes, i1 values need to be explicitly
handled as we want to avoid promoting these values.
Differential Revision: https://reviews.llvm.org/D54308
llvm-svn: 346499
Previously, during the search, all values had to have the same
'TypeSize', which is equal to number of bits of the integer type of
the icmp operand. All values in the tree had to match this size;
meaning that, if we searched from i16, we wouldn't accept i8s. A
change in type size requires zext and truncs to perform the casts so,
to allow mixed narrow types, the handling of these instructions is
now slightly different:
- we allow casts if their result or operand is <= TypeSize.
- zexts are sinks if their result > TypeSize.
- truncs are still sinks if their operand == TypeSize.
- truncs are still sources if their result == TypeSize.
The transformation bails on finding an icmp that operates on data
smaller than the current TypeSize.
Differential Revision: https://reviews.llvm.org/D54108
llvm-svn: 346480
FindBetterNeighborChains simulateanously improves the chain
dependencies of a chain of related stores avoiding the generation of
extra token factors. For chains longer than the GatherAllAliasDepths,
stores further down in the chain will necessarily fail, a potentially
significant waste and preventing otherwise trivial parallelization.
This patch directly parallelize the chains of stores before improving
each store. This generally improves DAG-level parallelism.
Reviewers: courbet, spatel, RKSimon, bogner, efriedma, craig.topper, rnk
Subscribers: sdardis, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53552
llvm-svn: 346432
The lowering was missing live-ins in certain cases, like a sequence of
multiple tMOVCCr_pseudo instructions. This would lead to a verifier
failure, and on pre-v6 Thumb CPSR would be incorrectly clobbered.
For reasons I don't completely understand, it's hard to get a sequence
of multiple tMOVCCr_pseudo instructions; the issue only seems to show up
with 64-bit comparisons where the result is zero-extended. I added some
extra testcases in case that changes in the future. Probably some
optimization opportunities here if anyone is interested. (@test_slt_not
is the case that was getting miscompiled.)
The code to check the liveness of CPSR was stolen from
X86ISelLowering.cpp; maybe it could be refactored into common helper,
but I have no idea where to put it.
Differential Revision: https://reviews.llvm.org/D54192
llvm-svn: 346355
Turn the assert in PrepareConstants into a conditon so that we can
handle mul instructions with negative immediates.
Differential Revision: https://reviews.llvm.org/D54094
llvm-svn: 346126
r345840 slightly changed the way promotion happens which could
result in zext and truncs having the same source and destination
types. This fixes that issue.
We can now also remove the zext and trunc in the following case:
(zext (trunc (promoted op)), i32)
This means that we can no longer treat a value, that is only used by
a sink, to be safe to promote.
I've also added in some extra asserts and replaced a cast for a
dyn_cast.
Differential Revision: https://reviews.llvm.org/D54032
llvm-svn: 346125
reduceBuildVecConvertToConvertBuildVec vectorizes int2float in the DAGCombiner, which means that even if the LV/SLP has decided to keep scalar code using the cost models, this will override this.
While there are cases where vectorization is necessary in the DAG (mainly due to legalization artefacts), I don't think this is the case here, we should assume that the vectorizers know what they are doing.
Differential Revision: https://reviews.llvm.org/D53712
llvm-svn: 345964
While mutating instructions, we sign extended negative constant
operands for binary operators that can safely overflow. This was to
allow instructions, such as add nuw i8 %a, -2, to still be able to
perform a subtraction. However, the code to handle constants doesn't
take into consideration that instructions, such as sub nuw i8 -2, %a,
require the i8 -2 to be converted into i32 254.
This is a relatively simple fix, but I've taken the time to
reorganise the code a bit - mainly that instructions that can be
promoted are cached and splitting up the Mutate function.
Differential Revision: https://reviews.llvm.org/D53972
llvm-svn: 345840
I think this is the actual important property; the previous visibility
check was an approximation.
Differential Revision: https://reviews.llvm.org/D53852
llvm-svn: 345790
Shows up rarely for 64-bit arithmetic, more frequently for the compare
patterns added in r325323.
Differential Revision: https://reviews.llvm.org/D53848
llvm-svn: 345782
The debug-use flag must be set exactly for uses on DBG_VALUEs. This is
so obvious that it can be trivially inferred while parsing. This will
reduce noise when printing while omitting an information that has little
value to the user.
The parser will keep recognizing the flag for compatibility with old
`.mir` files.
Differential Revision: https://reviews.llvm.org/D53903
llvm-svn: 345671
The SchedModel allows the addition of ReadAdvances to express that certain
operands of the instructions are needed at a later point than the others.
RegAlloc may add pseudo operands that are not part of the instruction
descriptor, and therefore cannot have any read advance entries. This meant
that in some cases the desired read advance was nullified by such a pseudo
operand, which still had the original latency.
This patch fixes this by making sure that such pseudo operands get a zero
latency during DAG construction.
Review: Matthias Braun, Ulrich Weigand.
https://reviews.llvm.org/D49671
llvm-svn: 345606
- Relex hard coded registers and stack frame sizes
- Some test cleanups
- Change phi-dbg.ll to match on mir output after phi elimination instead
of going through the whole codegen pipeline.
This is in preparation for https://reviews.llvm.org/D52010
I'm committing all the test changes upfront that work before and after
independently.
llvm-svn: 345532
The "dead" markings allow existing target-independent optimizations,
like MachineSink, to trigger more frequently. The CPSR defs would have
eventually been marked dead by LiveVariables, so this only affects
optimizations before regalloc.
The ARMBaseInstrInfo.cpp change is fixing a bug which is only visible
with this change: the transform adds a use to an otherwise dead def
of CPSR. This is covered by existing regression tests.
thumb2-tbh.ll breaks for Thumb1 due to MachineLICM changing the
generated code; I'll fix it in D53452.
Differential Revision: https://reviews.llvm.org/D53453
llvm-svn: 345420
While working on FileCheck producing better diagnostics in D53710, I noticed
that our test case is broken in a few different ways. The test was running, but
results were not checked as prefix CHECK-COMMON wasn't defined (which is what
FileCheck should warn about). Also, the output was different in 2 cases because
of recent changes in ARMCodeGenPrepare.
Differential Revision: https://reviews.llvm.org/D53746
llvm-svn: 345386