Also exposes an issue in DAGCombiner::visitFunnelShift where we were assuming the shift amount had the result type (after legalization it'll have the targets shift amount type).
llvm-svn: 349298
Use consistent rules for when to lower to SHLD/SHRD for slow machines - fixes a weird issue where funnel shift gets expanded but then X86ISelLowering's combineOr sees the optsize and combines to SHLD/SHRD, but now with the modulo amount guard......
llvm-svn: 349285
Summary:
Make machine PHIs optimization to work for single value register taken from
several different copies. This is the first step to fix PR38917. This change
allows to get rid of redundant PHIs (see opt_phis2.mir test) to make
the subsequent optimizations (like CSE) possible and simpler.
For instance, before this patch the code like this:
%b = COPY %z
...
%a = PHI %bb1, %a; %bb2, %b
could be optimized to:
%a = %b
but the code like this:
%c = COPY %z
...
%b = COPY %z
...
%a = PHI %bb1, %a; %bb2, %b; %bb3, %c
would remain unchanged.
With this patch the latter case will be optimized:
%a = %z```.
Committed on behalf of: Anton Afanasyev anton.a.afanasyev@gmail.com
Reviewers: RKSimon, MatzeB
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54839
llvm-svn: 349271
Add an original test case for setb before the exploitation actually takes effect, later we can check the difference.
Differential Revision: https://reviews.llvm.org/D55696
llvm-svn: 349251
The change is an effort to split and refactor abandoned
D34708 into smaller parts.
Here the behaviour of unsupported instructions is changed
to match the behaviour of explicit intrinsics calls.
Currently LLVM crashes with:
> Assertion getInstruction() && "Not a call or invoke instruction!" failed.
With this patch LLVM produces a more sensible error message:
> Cannot select: ... i32 = ExternalSymbol'__foobar'
Author: Denys Zariaiev <denys.zariaiev@gmail.com>
Differential Revision: https://reviews.llvm.org/D55145
llvm-svn: 349213
Summary:
This allows us to register it with the MachineFunction delegate and be
notified automatically about erasure and creation of instructions. However,
we still need explicit notification for modifications such as those caused
by setReg() or replaceRegWith().
There is a catch with this though. The notification for creation is
delivered before any operands can be added. While appropriate for
scheduling combiner work. This is unfortunate for debug output since an
opcode by itself doesn't provide sufficient information on what happened.
As a result, the work list remembers the instructions (when debug output is
requested) and emits a more complete dump later.
Another nit is that the MachineFunction::Delegate provides const pointers
which is inconvenient since we want to use it to schedule future
modification. To resolve this GISelWorkList now has an optional pointer to
the MachineFunction which describes the scope of the work it is permitted
to schedule. If a given MachineInstr* is in this function then it is
permitted to schedule work to be performed on the MachineInstr's. An
alternative to this would be to remove the const from the
MachineFunction::Delegate interface, however delegates are not permitted
to modify the MachineInstr's they receive.
In addition to this, the observer has three interface changes.
* erasedInstr() is now erasingInstr() to indicate it is about to be erased
but still exists at the moment.
* changingInstr() and changedInstr() have been added to report changes
before and after they are made. This allows us to trace the changes
in the debug output.
* As a convenience changingAllUsesOfReg() and
finishedChangingAllUsesOfReg() will report changingInstr() and
changedInstr() for each use of a given register. This is primarily useful
for changes caused by MachineRegisterInfo::replaceRegWith()
With this in place, both combine rules have been updated to report their
changes to the observer.
Finally, make some cosmetic changes to the debug output and make Combiner
and CombinerHelp
Reviewers: aditya_nandakumar, bogner, volkan, rtereshin, javed.absar
Reviewed By: aditya_nandakumar
Subscribers: mgorny, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D52947
llvm-svn: 349167
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
It costs nothing to spill an IMPLICIT_DEF value (the only spill code that's
generated is a KILL of the value), so when creating split constraints if the
live-out value is IMPLICIT_DEF the exit constraint should be DontCare instead
of PrefReg.
Differential Revision: https://reviews.llvm.org/D55652
llvm-svn: 349151
Mark G_ADD, G_SUB, G_MUL, G_AND, G_OR and G_XOR as legal for both ARM
and Thumb2.
Extract the legalizer tests for these opcodes into another file.
Add tests for the instruction selector.
llvm-svn: 349142
This is a retry of rL349051 (reverted at rL349056). I changed the check for dead-ness from
number of uses to an opcode test for DELETED_NODE based on existing similar code.
Differential Revision: https://reviews.llvm.org/D55655
llvm-svn: 349058
There's still a couple of minor SimplifyDemandedElts regressions in some of the shift amount splats that will be fixed in future patches.
llvm-svn: 349052
Summary:
Constraining an integer value to a floating point register using "f"
causes an llvm_unreachable to trigger. This patch allows i32 integers
to be placed in a single precision float register and i64 integers to
be placed in a double precision float register. This matches the behavior
of GCC.
For other types the llvm_unreachable is removed to instead trigger an
error message that points out the offending line.
Reviewers: jyknight, venkatra
Reviewed By: jyknight
Subscribers: eraman, fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D51614
llvm-svn: 349045
When computing register allocation hints for a GRX32Bit register, make sure
that any of the hinted registers that are also copy hints are returned first
in the list.
Review: Ulrich Weigand.
llvm-svn: 349037
Summary:
Sometimes MIR-level passes create DILocations that were not present in the
LLVM-IR. For example, it may merge two DILocations together to produce a
DILocation that points to line 0.
Previously, the address of these DILocations were printed which prevented the
MIR from being read back into LLVM. With this patch, DILocations will use
metadata references where possible and fall back on serializing them inline like so:
MOV32mr %stack.0.x.addr, 1, _, 0, _, %0, debug-location !DILocation(line: 1, scope: !15)
Reviewers: aprantl, vsk, arphaman
Reviewed By: aprantl
Subscribers: probinson, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D55243
llvm-svn: 349035
Mark G_SEXT, G_ZEXT and G_ANYEXT to 32 bits as legal and add support for
them in the instruction selector. This uses handwritten code again
because the patterns that are generated with TableGen are tuned for what
the DAG combiner would produce and not for simple sext/zext nodes.
Luckily, we only need to update the opcodes to use the Thumb2 variants,
everything else can be reused from ARM.
llvm-svn: 349026
Adds support for the various RISC-V FMA instructions (fmadd, fmsub, fnmsub, fnmadd).
The criteria for choosing whether a fused add or subtract is used, as well as
whether the product is negated or not, is whether some of the arguments to the
llvm.fma.* intrinsic are negated or not. In the tests, extraneous fadd
instructions were added to avoid the negation being performed using a xor
trick, which prevented the proper FMA forms from being selected and thus
tested.
The FMA instruction patterns might seem incorrect (e.g., fnmadd: -rs1 * rs2 -
rs3), but they should be correct. The misleading names were inherited from
MIPS, where the negation happens after computing the sum.
The llvm.fmuladd.* intrinsics still do not generate RISC-V FMA instructions,
as that depends on TargetLowering::isFMAFasterthanFMulAndFAdd.
Some comments in the test files about what type of instructions are there
tested were updated, to better reflect the current content of those test
files.
Differential Revision: https://reviews.llvm.org/D54205
Patch by Luís Marques.
llvm-svn: 349023
Summary:
All targets either just return false here or properly model `Fast`, so I
don't think there is any reason to prevent CodeGen from doing the right
thing here.
Subscribers: nemanjai, javed.absar, eraman, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D55365
llvm-svn: 349016