This is an enhancement to LLVM Source-Based Code Coverage in clang to track how
many times individual branch-generating conditions are taken (evaluate to TRUE)
and not taken (evaluate to FALSE). Individual conditions may comprise larger
boolean expressions using boolean logical operators. This functionality is
very similar to what is supported by GCOV except that it is very closely
anchored to the ASTs.
Differential Revision: https://reviews.llvm.org/D84467
As reported here: https://reviews.llvm.org/D75153#1987272
Before, each instance of llvm-cov was creating one thread per hardware core, which wasn't needed probably because the number of inputs were small. This was probably causing a thread rlimit issue on large core count systems.
After this patch, the previous behavior is restored (to what was before rG8404aeb5):
If --num-threads is not specified, we create one thread per input, up to num.cores.
When specified, --num-threads indicates any number of threads, with no upper limit.
Differential Revision: https://reviews.llvm.org/D78408
The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket.
== Background ==
Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads.
By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to.
This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market.
== The problem ==
The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std:🧵:hardware_concurrency() -- which can only return processors from the current "processor group".
== The changes in this patch ==
To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO).
When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead.
The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used.
When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once.
Differential Revision: https://reviews.llvm.org/D71775
Add the `-whitelist-filename-regex` option to restrict coverage
reporting to file paths that match a whitelist regex.
Patch by Michael Daniels!
rdar://56720320
1. raw_ostream supports ANSI colors so that you can write messages to
the termina with colors. Previously, in order to change and reset
color, you had to call `changeColor` and `resetColor` functions,
respectively.
So, if you print out "error: " in red, for example, you had to do
something like this:
OS.changeColor(raw_ostream::RED);
OS << "error: ";
OS.resetColor();
With this patch, you can write the same code as follows:
OS << raw_ostream::RED << "error: " << raw_ostream::RESET;
2. Add a boolean flag to raw_ostream so that you can disable colored
output. If you disable colors, changeColor, operator<<(Color),
resetColor and other color-related functions have no effect.
Most LLVM tools automatically prints out messages using colors, and
you can disable it by passing a flag such as `--disable-colors`.
This new flag makes it easy to write code that works that way.
Differential Revision: https://reviews.llvm.org/D65564
llvm-svn: 367649
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
The option is helpful for large projects where it's not feasible to specify sources which
user would like to see in the report. Instead, it allows to black-list specific sources via
regular expressions (e.g. now it's possible to skip all files that have "test" in its name).
This also partially fixes https://bugs.llvm.org/show_bug.cgi?id=34277
Reviewers: vsk, morehouse, liaoyuke
Reviewed By: vsk
Subscribers: kcc, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D43907
llvm-svn: 329581
Summary:
Local testing has demonstrated a great speed improvement, compare the following:
1) Existing version:
```
$ time llvm-cov show -format=html -output-dir=report -instr-profile=... ...
The tool has been launched: 00:00:00
Loading coverage data: 00:00:00
Get unique source files: 00:00:33
Creating an index out of the source files: 00:00:34
Going into prepareFileReports: 00:00:34
Going to emit summary information for each file: 00:28:55 <-- 28:21 min!
Going to emit links to files with no function: 00:28:55
Launching 32 threads for generating HTML files: 00:28:55
real 37m43.651s
user 112m5.540s
sys 7m39.872s
```
2) Multi-threaded version with 32 CPUs:
```
$ time llvm-cov show -format=html -output-dir=report -instr-profile=... ...
The tool has been launched: 00:00:00
Loading coverage data: 00:00:00
Get unique source files: 00:00:38
Creating an index out of the source files: 00:00:40
Going into prepareFileReports: 00:00:40
Preparing file reports using 32 threads: 00:00:40
# Creating thread tasks for the following number of files: 16422
Going to emit summary information for each file: 00:01:57 <-- 1:17 min!
Going to emit links to files with no function: 00:01:58
Launching 32 threads for generating HTML files: 00:01:58
real 11m2.044s
user 134m48.124s
sys 7m53.388s
```
Reviewers: vsk, morehouse
Reviewed By: vsk
Subscribers: Dor1s, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D41206
llvm-svn: 321871
Summary:
Documentation says that user can specify sources for both "show" and
"report" commands. "Show" command respects specified sources, but "report" does
not. It is useful to have both "show" and "report" generated for specified
sources. Also added tests to for both commands with sources specified.
Reviewers: vsk, kcc
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D38860
llvm-svn: 315685
Before this change using any of the -name*= command line options with an output
directory would result in a single file (functions.txt/functions.html)
containing the coverage for those specific functions. Now you get the same
directory structure as when not using any -name*= options.
Differential Revision: https://reviews.llvm.org/D38280
llvm-svn: 314396
Before this change using any of the -name*= command line options with an output
directory would result in a single file (functions.txt/functions.html)
containing the coverage for those specific functions. Now you get the same
directory structure as when not using any -name*= options.
Differential Revision: https://reviews.llvm.org/D38280
llvm-svn: 314310
There's a bug in the way the line and region summary objects are merged.
It would have been less likely to occur if those objects kept some data
private.
llvm-svn: 313416
The "NotCovered" fields in the region and line summary structs are
redundant. We should remove them to make the code clearer.
As a follow-up, the "NotCovered" entries should be removed from the
reports as well.
llvm-svn: 313415
Region coverage is difficult to explain without going deep into how
coverage is implemented. Instantiation coverage is easier to explain,
but probably not useful in most cases (templates don't exist in C, and
most C++ code contains relatively few templates).
This patch adds the options "-show-region-summary" and
"-show-instantiation-summary" to allow hiding those columns.
"-show-instantiation-summary" is turned off by default.
llvm-svn: 312969
Files which don't contain any functions are likely useless; don't
include them in the main table. Put the links at the bottom of the
page, in case someone wants to figure out coverage for code inside
a macro.
Not sure if this is the best solution, but it seems like an
improvement.
Differential Revision: https://reviews.llvm.org/D36298
llvm-svn: 310518
The CoverageMapping::getInstantiations() API retrieved all function
records corresponding to functions with more than one instantiation (e.g
template functions with multiple specializations). However, there was no
simple way to determine *which* function a given record was an
instantiation of. This was an oversight, since it's useful to aggregate
coverage information over all instantiations of a function.
llvm-cov works around this by building a mapping of source locations to
instantiation sets, but this duplicates logic that libCoverage already
has (see FunctionInstantiationSetCollector).
This change adds a new API, CoverageMapping::getInstantiationGroups(),
which returns a list of InstantiationGroups. A group contains records
for each instantiation of some particular function, and also provides
utilities to get the total execution count within the group, the source
location of the common definition, etc.
This lets removes some hacky logic in llvm-cov by reusing
FunctionInstantiationSetCollector and makes the CoverageMapping API
friendlier for other clients.
llvm-svn: 309904
Instead of stripping the longest common prefix off of the filenames in a
report, strip out the longest chain of redundant path components. This
fixes the case in PR31982, where there are two files with the same
prefix, and stripping out the LCP makes things less intelligible.
llvm-svn: 296029
This commit makes llvm-cov avoid showing 0% (0/0) coverage for things
like file function coverage, etc. in reports and HTML output. This can happen
for files like headers that have macros but no functions. This commit makes
llvm-cov report - (0/0) instead.
rdar://29246480
Differential Revision: https://reviews.llvm.org/D26615
llvm-svn: 287539
Rework getLongestCommonPrefixLen() so that it doesn't access string null
terminators. The old version with std::mismatch would do this:
|
v
Strings[0] = ['a', nil]
Strings[1] = ['a', 'a', nil]
^
|
This should silence a warning from the MSVC runtime (PR30515). As
before, I tested this out by preparing a coverage report for FileCheck.
Thanks to Yaron Keren for the report!
llvm-svn: 282422
We used to append filenames into a vector of std::string, and then
append a reference to each string into a separate vector. This made it
easier to work with the getUniqueSourceFiles API. But it's buggy.
std::string has a small-string optimization, so you can't expect to
capture a reference to one if you're copying it into a growing vector.
Add a test that triggers this invalid reference to std::string scenario,
and kill the issue with fire by just using ArrayRef<std::string>
everywhere.
llvm-svn: 282281
These are distinct statistics which are useful to look at separately.
Example: say you have a template function "foo" with 5 instantiations
and only 3 of them are covered. Then this contributes (1/1) to the total
function coverage and (3/5) to the total instantiation coverage. I.e,
the old "Function Coverage" column has been renamed to "Instantiation
Coverage", and the new "Function Coverage" aggregates information from
the various instantiations of a function.
One benefit of making this switch is that the Line and Region coverage
columns will start making sense. Let's continue the example and assume
that the 5 instantiations of "foo" cover {2, 4, 6, 8, 10} out of 10
lines respectively. The new line coverage for "foo" is (10/10), not
(30/50). The old scenario got confusing because we'd report that there
were more lines in a file than what was actually possible.
llvm-svn: 281875
This drops some redundant calls to get{UniqueSourceFiles,
CoveredFunctions}. We can figure out the right column widths without
re-doing this expensive work.
This isn't NFC, but I don't want to check in another binary *.covmapping
file with long filenames in it. I tested this locally on a project with
some long filenames (FileCheck).
llvm-svn: 281873
Treat filenames the same way in the text index as we do in the html
index. This is a follow-up to r281008 (an attempt to unbreak the
native_separators.c test on Windows).
Patch by Maggie Yi!
llvm-svn: 281062
It would be nice to prepare file reports (using the CoverageReport API)
without actually rendering them to the console. I plan on using this to
flesh out the 'index' files in the coverage views.
llvm-svn: 281009
Use the same color for counts and percentages. There doesn't seem to be
a reason for them to be different, and the summary looks more consistent
this way.
llvm-svn: 280765
The llvm-cov ‘report' command displays a summary of the coverage of a binary file.
The summary report currently only includes covered regions and covered functions.
This patch adds the coverage of lines in the summary report.
Differential Revision: https://reviews.llvm.org/D22569
llvm-svn: 276409
Previously, we only expanded function and filename column widths when
rendering file reports. This commit makes the change for function
reports as well.
llvm-svn: 250900
Change the output of llvm-cov s.t it does not truncate function names
and file paths when printing coverage reports.
Differential Revision: http://reviews.llvm.org/D12647
rdar://22531141
llvm-svn: 247635
This code didn't really make sense as is. If a filename is passed in,
the user obviously wants the coverage *for that file*, not *for
everything*.
llvm-svn: 229217
PR22575 occurred because we were unsafely storing references into a
std::vector. If the vector moved because it grew, we'd be left
iterating through garbage memory. This avoids the issue by simplifying
the logic to gather coverage information as we go, rather than storing
it and iterating over it.
I'm relying on the existing tests showing that this is semantically
NFC, since it's difficult to hit the issue this fixes without
relatively large covered programs.
llvm-svn: 229215
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
This commit fixes llvm-cov's function coverage metric by using the number of executed functions instead of the number of fully covered functions.
Differential Revision: http://reviews.llvm.org/D5196
llvm-svn: 218672
This commit expands llvm-cov's functionality by adding support for a new code coverage
tool that uses LLVM's coverage mapping format and clang's instrumentation based profiling.
The gcov compatible tool can be invoked by supplying the 'gcov' command as the first argument,
or by modifying the tool's name to end with 'gcov'.
Differential Revision: http://reviews.llvm.org/D4445
llvm-svn: 216300