Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.
All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.
Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.
Differential Revision: https://reviews.llvm.org/D31548
llvm-svn: 300032
NFCI.
Summary:
This is ground work for the changes to enable coercion in NewGVN.
GVN doesn't care if they end up constant because it eliminates as it goes.
NewGVN cares.
IRBuilder and ConstantFolder deliberately present the same interface,
so we use this to our advantage to templatize our functions to make
them either constant only or not.
Reviewers: davide
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30928
llvm-svn: 298262
Summary:
iterateOnFunction creates a ReversePostOrderTraversal object which does a post order traversal in its constructor and stores the results in an internal vector. Iteration over it just reads from the internal vector in reverse order.
The GVN code seems to be unaware of this and iterates over ReversePostOrderTraversal object and makes a copy of the vector into a local vector. (I think at one point in time we used a DFS here instead which would have required the local vector).
The net affect of this is that we have two vectors containing the basic block list. As I didn't want to expose the implementation detail of ReversePostOrderTraversal's constructor to GVN, I've changed the code to do an explicit post order traversal storing into the local vector and then reverse iterate over that.
I've also removed the reserve(256) since the ReversePostOrderTraversal wasn't doing that. I can add it back if we thinks it important. Though it seemed weird that it wasn't based on the size of the function.
Reviewers: davide, anemet, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31084
llvm-svn: 298191
Summary:
These are the functions used to determine when values of loads can be
extracted from stores, etc, and to perform the necessary insertions to
do this. There are no changes to the functions themselves except
reformatting, and one case where memdep was informed of a removed load
(which was pushed into the caller).
Reviewers: davide
Subscribers: mgorny, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30478
llvm-svn: 297438
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
performing partial redundancy elimination (PRE). Not doing so can cause jumpy line
tables and confusing (though correct) source attributions.
Differential Revision: https://reviews.llvm.org/D27857
llvm-svn: 291037
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
In the case of a fully redundant load LI dominated by an equivalent load V, GVN
should always preserve the original debug location of V. Otherwise, we risk to
introduce an incorrect stepping.
If V has debug info, then clearly it should not be modified. If V has a null
debugloc, then it is still potentially incorrect to propagate LI's debugloc
because LI may not post-dominate V.
Differential Revision: https://reviews.llvm.org/D27468
llvm-svn: 288903
[recommitting after the fix in r288307]
This requires some changes to the opt-diag API. Hal and I have
discussed this at the Dev Meeting and came up with a streaming delimiter
(setExtraArgs) to solve this.
Arguments after this delimiter are only included in the optimization
records and not in the remarks printed in the compiler output. (Note,
how in the test the content of the YAML file changes but the remarks on
the compiler output don't.)
This implements the green GVN message with a bug fix at line
http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/SingleSource/Benchmarks/Dhrystone/CMakeFiles/dry.dir/html/_org_test-suite_SingleSource_Benchmarks_Dhrystone_dry.c.html#L446
The fix is that now we properly include the constant value in the
message: "load of type i32 eliminated in favor of 7"
Differential Revision: https://reviews.llvm.org/D26489
llvm-svn: 288380
If LoopInfo is available during GVN, BasicAA will use it. However
MergeBlockIntoPredecessor does not update LI as it merges blocks.
This didn't use to cause problems because LI was freed before
GVN/BasicAA. Now with OptimizationRemarkEmitter, the lifetime of LI is
extended so LI needs to be kept up-to-date during GVN.
Differential Revision: https://reviews.llvm.org/D27288
llvm-svn: 288307
There's no agreement about this patch. I personally find the
PRE machinery of the current GVN hard enough to reason about
that I'm not sure I'll try to land this again, instead of working
on the rewrite).
llvm-svn: 284796
In theory this could be generalized to move anything where
we prove the operands are available, but that would require
rewriting PRE. As NewGVN will hopefully come soon, and we're
trying to rewrite PRE in terms of NewGVN+MemorySSA, it's probably
not worth spending too much time on it. Fix provided by
Daniel Berlin!
llvm-svn: 284311
Refactor replaceDominatedUsesWith to have a flag to control whether to replace uses in BB itself.
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
llvm-svn: 280949
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24170
llvm-svn: 280427
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
Fix for PR 28418.
opt never finishes compiling a test when -gvn option is passed.
The problem is caused by the fact that GVN fails to fold a constant expression.
Differential Revision: https://reviews.llvm.org/D22185
llvm-svn: 275483
r273711 was reverted by r273743. The inliner needs to know about any
call sites in the inlined function. These were obscured if we replaced
a call to undef with an undef but kept the call around.
This fixes PR28298.
llvm-svn: 273753
Again, fairly simple. Only change is ensuring that we actually copy the property of the load correctly. The aliasing legality constraints were already handled by the FRE patches. There's nothing special about unorder atomics from the perspective of the PRE algorithm itself.
llvm-svn: 268804
You'll note there are essentially no code changes here. Cross block FRE heavily reuses code from the block local FRE. All of the tricky parts were done as part of the previous patch and the refactoring that removed the original code duplication.
llvm-svn: 268775
This patch is the first in a small series teaching GVN to optimize unordered loads aggressively. This change just handles block local FRE because that's the simplest thing which lets me test MDA, and the AvailableValue pieces. Somewhat suprisingly, MDA appears fine and only a couple of small changes are needed in GVN.
Once this is in, I'll tackle non-local FRE and PRE. The former looks like a natural extension of this, the later will require a couple of minor changes.
Differential Revision: http://reviews.llvm.org/D19440
llvm-svn: 268770
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231