v3f32 should not be expanded to v4f32. getresinfo with a dmask of 7
created an image sample with a v3f32 return value, which was bitcasted
to a v4f32 in constructRetValue.
Differential Revision: https://reviews.llvm.org/D88206
The langref already states it does, but this wasn't implemented. Also
covers inalloca and preallocated. Also helps fix a dependence on
pointer element types.
This reverts commit ca907bfb57.
According to michel.daenzer,
> This completely broke the Mesa radeonsi driver on Navi 14. Xorg +
> xterm come up with major corruption & psychedelic colours.
The shift amount type does not necessarily match the result type. This
was inserting a trunc from s32 to s32, which asserted. Just preserve
the original shift amount type which can be legalized later.
When memory operations are outstanding on function calls, either the
caller or the callee can insert a waitcnt to ensure that all reads are
finished.
Calls need some time to be executed, so if the callee inserts the
waitcnt, filling the instruction buffer and waiting for memory will be
interleaved, hiding some latency. This comes at the cost of having a
waitcnt inside functions that may not be needed as no memory operations
are outstanding.
For function calls, this is already implemented. The same principal
applies to returns: If the caller inserts a waitcnt after the call, the
callee does not have to wait and the return and memory operation can be
run in parallel.
This commit implements waiting in the caller after returning from a
function call.
Differential Revision: https://reviews.llvm.org/D87674
This rewrites big parts of the fast register allocator. The basic
strategy of doing block-local allocation hasn't changed but I tweaked
several details:
Track register state on register units instead of physical
registers. This simplifies and speeds up handling of register aliases.
Process basic blocks in reverse order: Definitions are known to end
register livetimes when walking backwards (contrary when walking
forward then uses may or may not be a kill so we need heuristics).
Check register mask operands (calls) instead of conservatively
assuming everything is clobbered. Enhance heuristics to detect
killing uses: In case of a small number of defs/uses check if they are
all in the same basic block and if so the last one is a killing use.
Enhance heuristic for copy-coalescing through hinting: We check the
first k defs of a register for COPYs rather than relying on there just
being a single definition. When testing this on the full llvm
test-suite including SPEC externals I measured:
average 5.1% reduction in code size for X86, 4.9% reduction in code on
aarch64. (ranging between 0% and 20% depending on the test) 0.5%
faster compiletime (some analysis suggests the pass is slightly slower
than before, but we more than make up for it because later passes are
faster with the reduced instruction count)
Also adds a few testcases that were broken without this patch, in
particular bug 47278.
Patch mostly by Matthias Braun
Alignment requirements for ds_read/write_b96/b128 for gfx9 and onward are
now the same as for other GCN subtargets. This way we can avoid any
unintentional use of these instructions on systems that do not support dword
alignment and instead require natural alignment.
This also makes 'SH_MEM_CONFIG.alignment_mode == STRICT' the default.
Differential Revision: https://reviews.llvm.org/D87821
Pre-gfx10 all MODE-setting instructions were S_SETREG_B32 which is
marked as having unmodeled side effects, which makes the machine
scheduler treat it as a barrier. Now that we have proper implicit $mode
operands we can use a no-side-effects S_SETREG_B32_mode pseudo instead
for setregs that only touch the FP MODE bits, to give the scheduler more
freedom.
Differential Revision: https://reviews.llvm.org/D87446
We have a single noret intrinsic an a lot of special handling
around it. Declare it just as any other but do not define rtn
instructions itself instead.
Differential Revision: https://reviews.llvm.org/D87719
Update TargetMachine.Options with function attributes before we start
to generate MIR instructions. This allows access to correct function
attributes via TargetMachine.Options (it used to access attributes of
the function that was translated first).
This affects some existing tests with "no-nans-fp-math" attribute.
Follow-up on D87456.
Differential Revision: https://reviews.llvm.org/D87511
Add a combiner helper that replaces G_UNMERGE where all the destination lanes
are dead except the first one with a G_TRUNC.
Differential Revision: https://reviews.llvm.org/D87174
Add a combiner helper that replaces G_UNMERGE of big constants into direct
use of smaller constants.
Differential Revision: https://reviews.llvm.org/D87166
Clustering loads has caching benefits, but as far as I know there is no
advantage to clustering stores on any AMDGPU subtargets.
The disadvantage is that it tends to increase register pressure and
restricts scheduling freedom.
Differential Revision: https://reviews.llvm.org/D85530
Check for NoNaNsFPMath function attribute in isKnownNeverSNaN.
Function attributes are in held in 'TargetMachine.Options'.
Among other things, this allows selection of some patterns imported
in D87351 since G_FCANONICALIZE is not generated when isKnownNeverSNaN
returns true in lowerFMinNumMaxNum.
However we notice some incorrect results since function attributes are
not correctly written in TargetMachine.Options when next function is
processed. Take a look at @v_test_no_global_nnans_med3_f32_pat0_srcmod0,
it has "no-nans-fp-math"="false" but TargetMachine.Options still has it
set to true since first function in test file had this attribute set to
true. This will be fixed in D87511.
Differential Revision: https://reviews.llvm.org/D87456
The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
"MY_PAT:op1:op2" and the ones with same "name" represent same operand.
Add 'same operand check' for this case.
Differential Revision: https://reviews.llvm.org/D87351
GlobalIsel emitter does not import patterns where complex sub-operand
of a non-leaf complex pattern is referenced more then once. Multiple
references of complex patterns with same name and same sub-operands
represent the same operand. Document this with a test.
Predicates with 'let PredicateCodeUsesOperands = 1' want to examine
matched operands. When we encounter predicate code that uses operands,
analyze its named operand arguments and create a map between argument
index and name. Later, when leaf node with name is encountered, emit
GIM_RecordNamedOperand that will store that operand at its argument
index in operand list. This operand list will be an argument to c++
code of the predicate.
Differential Revision: https://reviews.llvm.org/D87285
We weren't using this before, so none of the MachineFunction CFG edges had the
branch probability information added. As a result, block placement later in the
pipeline was flying blind.
This is enabled only with optimizations enabled like SelectionDAG.
Differential Revision: https://reviews.llvm.org/D86824
This combine previously tried to take sequences like:
%cond = G_ICMP pred, a, b
G_BRCOND %cond, %truebb
G_BR %falsebb
%truebb:
...
%falsebb:
...
and by inverting the compare predicate and swapping branch targets, delete the
G_BR and instead have a single conditional branch to the falsebb. Since in an
earlier patch we have a combine to fold not(icmp) into just an inverted icmp,
we don't need this combine to do as much. This patch instead generalizes the
combine by just looking for:
G_BRCOND %cond, %truebb
G_BR %falsebb
%truebb:
...
%falsebb:
...
and then inverting the condition using a not (xor). The xor can be folded away
in a separate combine. This change also lets us avoid some optimization code
in the IRTranslator.
I also think that deleting G_BRs in the combiner is unnecessary. That's
something that targets can decide to do at selection time and could simplify
generic code in future.
Differential Revision: https://reviews.llvm.org/D86664
Add subtarget feature check to avoid using ds_read/write_b96/128 with too
low alignment if a bug is present on that specific hardware.
Add this "feature" to GFX 10.1.1 as it is also affected.
Add global-isel test.
The addend in a REL32 reloc needs to be adjusted to account for the
offset from the PC value returned by the s_getpc instruction to the
point where the reloc is applied. This was being done correctly for
(GOTPC)REL32_LO but not for (GOTPC)REL32_HI. This will only make a
difference if the target symbol happens to get loaded almost exactly
a multiple of 4G away from the relocated instructions.
Differential Revision: https://reviews.llvm.org/D86938
This is needed for an upcoming change to how we translate conditional branches
which might generate these.
Differential Revision: https://reviews.llvm.org/D86383
Unmerges have the same fundamental problem as G_TRUNC, and G_TRUNC
could be implemented in terms of G_UNMERGE_VALUES. Reducing the number
of elements in unmerge results ends up producing the original unmerge
type profile, so the artifact combiner needs to eliminate the
intermediate illegal registers. This avoids infinite looping in the
legalizer in a future change.
Assuming an unmerge has each result unmerged the same way, this ends
up producing a new unmerge of the source for every definition. I'm not
sure if the artifact combiner should either insert temporary merges
here and erase the original merge, or if the combiner should look at
uses from defs rather than defs from uses for unmerges.
In a few cases this regresses from using 16-bit shifts for 8-bit
values to using 32-bit shifts, but I think these can be legalized
later (the other legalization rules don't try very hard to use 16-bit
shifts either).
https://reviews.llvm.org/D83833
Patch adds two new GICombinerRules for G_SELECT. The rules include:
combining selects with undef comparisons into their first selectee value,
and to combine away selects with constant comparisons. Patch additionally
adds a new combiner test for the AArch64 target to test these new G_SELECT
combiner rules and the existing select_same_val combiner rule.
Patch by mkitzan
If the condition output is negated, swap the branch targets. This is
similar to what SelectionDAG does for when SelectionDAGBuilder
decides to invert the condition and swap the branches.
This is leaving behind a dead constant def for some reason.
This produces less work for addressing mode matching. I think this is
safe since I don't think machine IR is supposed to give the same
aliasing properties as getelementptr in the IR.
Most notably, we were incorrectly reporting <3 x s16> as a legal type
for these. Make sure these aren't legal to help make progress on
fixing the artifact combiner and vector legalizer
rules. Unfortunately, this means spreading the -global-isel-abort=0
hack, although this doesn't change the legalizer result in any
situation.
Implicit uses of non-register value types places impossible to satisfy
constraints on the legalizer / artifact combiner. These prevent
writing sensible legalize rules for the artifacts without triggering
infinite loops in the legalizer.
The verifier really needs to enforce this, but I'm not sure what the
exact conditions would look like yet.
This interferes with GlobalISel's much better handling of the
situation.
This should really be disable for GlobalISel. However, the fallback
only re-runs the selection passes, and doesn't go back and rerun any
codegen IR passes. I haven't come up with a good solution to this
problem.
This is to initially handleg immAllOnesV, which should match
G_BUILD_VECTOR or G_BUILD_VECTOR_TRUNC. In the future, it could be
used for other patterns cases that map to multiple G_* instructions,
such as G_ADD and G_PTR_ADD.
Handle workitem intrinsics. There isn't really away to adequately test
this right now, since none of the known bits users are fine grained
enough to test the edge conditions. This triggers a number of
instances of the new 64-bit to 32-bit shift combine in the existing
tests.
shl ([sza]ext x, y) => zext (shl x, y).
Turns expensive 64 bit shifts into 32 bit if it does not overflow the
source type:
This is a port of an AMDGPU DAG combine added in
5fa289f0d8. InstCombine does this
already, but we need to do it again here to apply it to shifts
introduced for lowered getelementptrs. This will help matching
addressing modes that use 32-bit offsets in a future patch.
TableGen annoyingly assumes only a single match data operand, so
introduce a reusable struct. However, this still requires defining a
separate GIMatchData for every combine which is still annoying.
Adds a morally equivalent function to the existing
getShiftAmountTy. Without this, we would have to do try to repeatedly
query the legalizer info and guess at what type to use for the shift.
This is the slowest operation in the already slow pass.
Instead of sorting just put a stall list into an ordered
map.
Differential Revision: https://reviews.llvm.org/D86253
Fix local ds_read/write_b96/b128 so they can be selected if the alignment
allows. Otherwise, either pick appropriate ds_read2/write2 instructions or break
them down.
Differential Revision: https://reviews.llvm.org/D81638
Features UnalignedBufferAccess and UnalignedDSAccess are now used to determine
whether hardware supports such access.
UnalignedAccessMode should be used to enable them.
hasUnalignedBufferAccessEnabled() and hasUnalignedDSAccessEnabled() can be
now used to quickly check both.
Differential Revision: https://reviews.llvm.org/D84522
Adjust alignment requirements for ds_read/write_b96/b128.
GFX9 and onwards allow misaligned access for reads and writes but only if
SH_MEM_CONFIG.alignment_mode allows it.
UnalignedDSAccess is set on GCN subtargets from GFX9 onward to let us know if we
can relax alignment requirements.
UnalignedAccessMode acts similary to UnalignedBufferAccess for DS instructions
but only from GFX9 onward and is supposed to match alignment_mode. By default
alignment of 4 is required.
Differential Revision: https://reviews.llvm.org/D82788
Summary:
- HIP uses an unsized extern array `extern __shared__ T s[]` to declare
the dynamic shared memory, which size is not known at the
compile time.
Reviewers: arsenm, yaxunl, kpyzhov, b-sumner
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82496
Assuming this is used to split a memory access into smaller pieces,
the new access should still have the same aliasing properties as the
original memory access. As far as I can tell, this wasn't
intentionally dropped. It may be necessary to drop this if you are
moving the operand outside of the bounds of the original object in
such a way that it may alias another IR object, but I don't think any
of the existing users are doing this. Some of the uses widen into
unused alignment padding, which I think is OK.
Custom lower and widen odd sized loads up to the alignment. The
default set of legalization actions doesn't have a way to represent
this. This fixes naturally aligned <3 x s8> and <3 x s16> loads.
This also starts moving towards eliminating the buggy and
overcomplicated legalization rules for narrowing. All the memory size
changes should be done in the lower or custom action, not NarrowScalar
/ FewerElements. These currently have redundant and ambiguous code
with the lower action.
By detecting this sign extend pattern early, we can uncover opportunities for
more optimizations.
Differential Revision: https://reviews.llvm.org/D85965
We weren't looking through the parameters on calls at all.
E.g., say you had
```
declare i32 @zext(i32 zeroext %x)
...
%y = call i32 @zext(i32 %something)
...
```
At the point of the call, we wouldn't know that the %something should have the
zeroext attribute.
This sets flags in about the same way as
TargetLoweringBase::ArgListEntry::setAttributes.
Differential Revision: https://reviews.llvm.org/D86125
Previously, it would successfully select and assert if not HSA or PAL
when expanding the pseudoinstruction. We don't need the
pseudoinstruction anymore since we know the total size after
legalization.
The code to determine the value size was overcomplicated and only
correct in the case where the result register already had a register
class assigned. We can always take the size directly from the
register's type.
The artifact combiner searches for the uses of G_MERGE_VALUES for
unmerge/trunc that need further combining. This also needs to handle
the vector merge opcodes the same way. This fixes leaving behind some
pairs I expected to be removed, that were if the legalizer is run a
second time.
We may have an SGPR->VGPR copy if a totally uniform pointer
calculation is used for a VGPR pointer operand.
Also hack around a bug in MUBUF matching which would incorrectly use
MUBUF for global when flat was requested. This should really be a
predicate on the parent pattern, but the DAG always checked this
manually inside the complex pattern.
These should really match either G_BUILD_VECTOR or
G_BUILD_VECTOR_TRUNC, but there doesn't seem to be an existing
mechanism for matching alternative opcodes. There is GIM_SwitchOpcode,
but it seems to assume it's oly only used for matcher optimization.
I could also omit any opcode check and rely on the matcher directly
checking the opcode, but the table optimizer currently assumes there
has to be an opcode check.
Also doesn't try to handle undef elements like the DAG version.
Unfortunately this ends up not working as expected on targets with
16-bit operations due to AMDGPUCodeGenPrepare's promotion of uniform
16-bit ops to i32.
The vector case annoyingly requires switching the checked opcode,
since constants for vectors aren't directly handled.
I also need to think more carefully about whether this is valid for i1.
PAL recently got support for multiple ELF sections and relocations,
therefore we can now use .rodata sections instead of forcing constants
into .text.
Differential Revision: https://reviews.llvm.org/D85895
This mirrors the support for the equivalent extracts. This also
creates a huge mess that would be greatly improved if we had any bit
operation combines.
ISD::ATOMIC_STORE arbitrarily has the operands in the opposite order
from regular ISD::STORE, which always introduced an annoying
duplication of patterns to handle both cases. Since in GlobalISel
there's just the one G_STORE, we need to swap the operands to
correctly emit the type check for the pointer operand.
Some work started in 20aafa3156 to
migrate SelectionDAG to use ISD::STORE for atomics, but that work
seems to have stalled. Since this is the pretty much the last
operation which matters which isn't supported for AMDGPU, use this
compatibility hack to unblock declaring it functionally complete.
Not sure what's going on with the pending_phis AArch64 test. It seems
it didn't always use atomics, and I'm not sure what it was originally
testing matters anymore.
If it is load cluster, we don't need to create the dependency edges(SUb->reg) from SUb to SUa
as they both depend on the base register "reg"
+-------+
+----> reg |
| +---+---+
| ^
| |
| |
| |
| +---+---+
| | SUa | Load 0(reg)
| +---+---+
| ^
| |
| |
| +---+---+
+----+ SUb | Load 4(reg)
+-------+
But if it is store cluster, we need to create it as follow shows to avoid the instruction store
depend on scheduled in-between SUb and SUa.
+-------+
+----> reg |
| +---+---+
| ^
| | Missing +-------+
| | +-------------------->+ y |
| | | +---+---+
| +---+-+-+ ^
| | SUa | Store x 0(reg) |
| +---+---+ |
| ^ |
| | +------------------------+
| | |
| +---+--++
+----+ SUb | Store y 4(reg)
+-------+
Reviewed By: evandro, arsenm, rampitec, foad, fhahn
Differential Revision: https://reviews.llvm.org/D72031